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/ ’ Abstract

Application of “Total \Variation Diminishing ("f’\'D'j schemes to both inviscid
and viscous flows is cousidered. The mathematical and physical basis of TVD
schemesi@?&liscussccl. First and second-order accurate TVD schemes,?incl a secund-
order accurate Lax-Wendroff scheine, :u used to compute solutions to the Riemann
prublem in order to investigate the capability of each vo resolve shocks, rarefaciions,
and contact surfaces. Second-order finite-volume and finite-difference TVD schenies
are usec {o obtain solutions to inviscid supersonic and transonic cascade flow prob-
lems. T'VD schemes are shown to be superior to the Lax-Wendroff family of schemes

for both transient and steady-state computations.

TVD methodology is extended to bhe Solution of viscous flow problems. A first-
order time accurate. second-oruer space accurate algorithm is contrasted against
a second-order time and space accurate algorithm for the solution of the viscous
Burgers’ equation. Necessity of using the fuily second-order accurate algorithm at
low Reynolds numbecrs is shown. Solutions ate computed to the ’f;roblemb of lamina:
shock-boundary-layer interaction and unsteady, laminar, shock-induced heat tiansie
using the new algorithms. These algorithms provide the capabilitypfor the first time.
<o accurately predict separation, reattachment. and pressure and skin friction profiles
for shock-boundary-laver interaction. .\dditionally,‘iext:emcly accurate colnpatison
with theory and experiment isibc;\?iudcnt for the unsteady. shock-induced! heat tiansfer
problem., These solutions are conirasted against solutions computed with the Be. m-

Warming/ algorithm. and the TVD solutions are shown to be vastly superior.

Vi




HIGH-RESOLUTION TVD SCHEMES FOR THE ANALYSIS OF
I. INVISCID SUPERSONIC AND TRANSONIC FLOWS
I1. VISCOUS FLOWS WITH SHOCK-INDUCED
SEPARATION AND HEAT TRANSFER

[. Introduction to Part I

1.1 OQuerview of Part 1

Part 1 begins with a historical look-at the developrent of what has become
known as the Total Variation Diminishing ('T\'D) class ot :chemes for solving hyp=i-
bolic conservation laws. Conditions necessary for « finite-<ifference scheme to yiekl
physically meaningful solutions are discussed. Developmert of a second-order accu-
rate TVD scheme for scalar conservation laws is detailed, along with the means of
extending it to systems such as the Eulei equations of gasdynamics. A brief discus-
sion of the Euler equations is undertaken iu the conteat of applying TV'D schemes to
their solution. First-order TVD. second-order TVD. and second-order Lax-Wendroff
schemes are applied to the Riemann problem to determine the ability of each to
resolve the relevant features. Two second-order TV'D schemes for solving systems of
cquations in two space dimensions ave covered. These two schemes ate then applied
to the solution of both supersonic and {ransonic cas e fiow problens. VD algo-
rithms are shown to be vastly superior to the Lax-Wendiolf e 27 of algorithms for

both transient and steady-state solutions,

1.2 The Genesis of TVD

Total Variation Diminishing (T\'D) schemes. originally refered to as Total Vaii-
ation Noniucreasing (TVNI). first appeared i 1983 with the publication of Harten’s
Ifigh Resolution Schemes for Hyperbolic Conservation Laies [22]. In general. TAD

schemes are arrived at by applying a first order accurate numerical method to an




wppropriately modified flux function thus yielding a method vuat is second-ordei ac-
curate except near points of extrema of the solution. The genesis of the TV'D class
ol finite-difference schemes can be traced to 1976 when Harten, Hyman. and Lax au-
thored On Finitc-Difference Approximations and Eni o+ “‘onditions for Shocks [23].
This work first addressed the question of whethe. “o - liference approximations
to- the solution of hyperbolic conservation laws ¢ .. er, ‘2 Jhe physically relevasnt
solution. This is of interest because weak solutions tu - c¢h conservation laws are vt
uniquely determined by initial values, but require an ~ntinoy condition be met w

converge to the particular physical solution [23).

In the mid 1970%s, Harten was also working on his wutificial coinpiession method
(ACM) [19] to modity standard finite-difference schemes in an effort to prevent the
smearing ol contact surfaces and improve shock resolution {20. 21]. Prior to this
effort Harten states thal the standard finite-difference schemes in use typically
smeared shochs over 3-5 cells while the width of the contact surface behaved as
nMRFY where n is the total number of time steps taken and R is the schieme’s order
of accuracy. Harten’s ACM also addressed the [act that schemes of order greate:
than one produced overshoots and undershoots arou:d the discontinuity [20; «ud
forced the approximated solution to be nonphysical {23]. ilarten’s ACM modifica-
tions to existing schemes provided the . .nndation for the new class of TVD schemes

presented in his 1983 paper.

The rigorous mathematical foundation of TV'D schemes is mainly confined io
scalar linear and noulinear conservation laws and is paiuswakingly outlive:d in ref-
erences {23] and [22]. Computational fluid dynamicists are interested in applyving
TVD schemes io systems of nonlinear hyperbolic conservation laws. such as the Eu-
ler «quaticns of gasdynamics. Therefore. Harten details the application of TVD
methodology to 1-D systems using Roe’s approximate Riemann solver and provides
an example of its extension to 2-I) using Strang’s dimensional splitting 22]. The viig-
inai arien scheme was a second-order accurate explicit. method but was extended

to a second-order accurate implicit method by Yee and Harten [43].

The high-resolution TVD approach soon gathered favor; explicit and implicit
variations were then applied to the Euler equations in general geometiies by Yee and
Kutler [44] and by Yee and Harten {46]. Later. Wang and Widhopf further extended

Harten's TVD methodology Lo a. finite-volume scheme for the Euler equations [{8].




TVD algorithms have continc2d to develop over the past decade. Harten's origi-
nal schemne was of the upwind variety, meaning that the modifications to the flux
function are applied base on the direction of wave propagation. or chara:ioristic
d'rection. Symmetric algorithms have since come into use where the modilic «tions
are applied without regard to the characteristic directions. Muthods are also avail-
able for partial differential equations with source terms and still suurce terms. Yee's
1989 publication,d Class of High-Resolution Explicit and Implicd Shock-Capluriny
Methods [45], pri . ides deiailed information on numerous versions of T\'D algorithins

and examples of their application to nwnerous problems.

1.3 Hyperbolic Conservation Laws and 1'% D Methodology

The present section provides a description of the hyperbolic conservation laws
for which TVD schenies provide solutions. The requirements for uniquencss of a.
solution to the initial vajue problem are given along with the necessary conditions
to guarantee convergence of a finite difference approximation to this solution. A
suminary is provided of the methodology behind the construction of Harten's original

second-order accurate TVD scheme.

1.3.1 Finile-Difference Schemes ane Oleinik’s Entropy Condition.  The Hiesent

analysis is concerned with weak solutions of the initial valuc problem

w + f(u)r =0
—x<r<oe i1.h
u(z,0) = o(x)

where u(x,{) is a cobimn vector of m unknowns, f(u) is the flux vector of m

components, and o(xr) is the initial data. lq 1.1 is hyperbolic if all eigenvalues

a'(u),....a"(u) of the Jacshian matrix
Alu) = [, (1.2)
are real and the set of right eigenvectors R'(u)..... R™(u) is complete [22] over the

domain.




Following Harten [22]. consider systems of conservation laws. Eq 1.1, possess-

ing an entropy function ") defined such that

I’.Hll > 0
['H_/.H = 1:‘(1

where [ is a [unction known as the entropy flux [22].

The class of all weak solutions to I2q 1.1 is too large in that the initial value
problem is not unique [23]. \n additional constraining relation is needed if the
scheme is to choose the physically relevant solution. This additional constraint is

known as Oleinik’s entropy condition and can be expressed as [23]
C(uyg+ Flas,. <0 (1.1)

Let us now consider numerical solutions to Eq 1.1 obtained nsing a (2& + 1)
point explicit scheme in conservation form [23]. A scheme is in couservation form if

it can be expressed as

l.v;"“ = 1‘; -\ (/;Ll/_, —_ 'f;l—ll'l) (1.5)

where
i R ) 3
./,;-:-l/.z = | \IJ_;‘.+| ..... ‘,-:«k) (1.6)

and A = M/Ax. In Egs L5 and 1.6, [ is the “pumerical” . or mesh. flux function
consistent with [f(«) in that flu..... u) = [{u) The solution u is approximated on
the mesh Fy o} = w(jAc.nAl). The numerical scheme given by Eq 1.5 is cousistent

with the eatropy condition. Eq 1.1, il

"nel " {1 Al -

CrE U = N Fr = Figs) (1.7

where [} =17 (l;‘) Flap=rF (r}‘_,__H ..... r;’H.). and I is the numerical entropy
tux consistent with F(u) such that Flu..... u) = Fiu)

The question of convergende of the finite difference scheme. Eq 1.5, to the ap-

propriate weak solution of Eq 1.1 must now be addressed. The  heme under consid-




eration is nonlinear. so stability of a cousistent scheme does not imply comveigence.

Harten [22] outlines three conditions which. when satisfied. ensure convergence.

(1) The total variation {(I'V") of the finite difference scheme is uniformiy

bounded, where

(2) The scheme is consistent. as Ar — 0 . with Oleinik’s entropy

condition for all entropy functions of kg 1.1.

(3) Oleinik’s eniropy condition implies a unique solution of the

initial value problem for Eq 1.1.

The veader is referred to the references given by Harten [22] for the arguments
that imply convergence given satisfaction of the above criteria. For the present
work, the validity of thesc criteria will be assumed and the effort concentrated on
demonstrating the development of a scheme that satisfies criteria (1) and (2) when

given the third criterion.

1.3.2  Decvelopment of Harlen's Sceond-Orvder Sealar TVD Scheme.  Harten's
second-order accurate TVD <cheme is the product of a nonoscillatory. first-orde
accurate scheme applied to an appropriately modified flus function {22]. This section
describes the properties ol the first-order scheme and outlines the procedure nsed by

Harten to arrive at the appropriate modified flux.

Consider the initial value problem for a scalar conservation law:

w - )y S ug+aluyn, =0
a(u) = [, —xCr<x (1.9)

(2. 0) = ofr)

where o(x) is of hounded total variation. Rigouious analysis is restricted to the scala

case because TVD schemes are not defined [or systems of of non-lincar conservation




Jaws where the spatial total variation of the solution may increase due to wave

interaction [22].

A weak solution of Eq 1.9 has a monotonicity property {22], as a function of

time. defined as:

(1) No new local extrema in 2 may be creaied.
(2) A local minimum is nondecreasing and a local maximum

1s nonincreasing,.
The monotonicity property implies that the total variation in ¥ is nounincreasing in
time, TV (u (12)) S TV (u ().

An explicit. (2k + 1), point finite-difference scheme in conservation form. as

given by Eq 1.5 and applied to Eq L.9. can be written as

RN L 3 I 4 n n
ot = H () (1.10)
= v} —-A [f (LJ_L+l ..... zJ.L,_.) -~/ (v;-‘_,:,. . .,v;-‘.!_,:_,)]
or in operator notation as
t'"'H:L'l'" ”l])

The scheme given by Eq 1.10 is TV'D if, for all v of bounded total variation
TV(L-e)<TV{(r) (1.12)
where the total variation is defined by Eq 1.5, Eq L.11 represents a monotonicity
preserving scheme if the operator L is monotonicity preserving. That is. if ¢ i~ a
monotonic mesh function so is L - . The scheme is monotone if /1 is a monotonic
nondecreasing funciion of each of its 2k 4+ 1 arguments [23]:

e, (Wagee oo ) 2> 0 SREL

for all 7 such that =& <7 <k

f




An example of a scheme that is not monotone is the second-order accurate

Lax-Wendroff scheme with

f,-,,.;_ = é [_/' (v;‘) 4 [ (uyﬂ) ~ ), u] (1.14)

where A L 1v = 2,5 — vy . Therefore the discrete equation is
2

g+l n__ 1 o - — 42 S T YOt BT
v; = o} —3A [_I(J+l) ! (11__1) az\ (LJ+l 207 4 ‘,-n)}

\ (1.15)
— . W JU L1
= H (o}_,.t»},bﬁl)
Taking the derivative of [ with respect to the argument v}, vields
‘ 2 3
I, = 3(” - ) {1.16)

where v = al . Only the case 0 < » < | need be examined since the Law-\Wendroff
scheme is unstable for v > 1. and Lax-Wendroff provides the exact soluiion for # = 1.
Clearly, the Lax-Wendroff scheme is not monotone for any » < 1. Additionally.
the numerical results of reference {23} show that the Lax-Wendrofl scheme is not

monotonicity preserving.

The first-order accurate Roe scheme provides an example of monotone behas -

ior. The numerical flux for the Roe scheme is

EGOE %ﬂi-\;,;y"} (1175

ERAY

-]




S Ot S < arg 2nLs & S
Taking derivatives of /] with respect to cach of its arguments gives

11 = v

Uyemi

H, = l=-v (1.19)
I.’,,’,_}l =0

Thus, H is a monotonic, non-decreasing function of each of its arguments showing

that the Roe scheine is indeed monotonic.

Let Syy. Stvp. and Syyp denote monotone. TVD. and monotonicity preserving
schemes respectively. Theorem 2.1 of reference {22] provides the hietarchy of these
propertics:

Sy C S1vp C Sare (1.20)
Thus. the Roe scheme is also TVD and monotonicity preserving.

A schemein the conservation form of Eq 1.10 that is monotone with ¢} converg-
ing boundedly almost everywhere to some function u(.x. 1) has two further desirable
properiies. The theorem of Lax and Wendroff as given by reference {23] states that
if the scheme is in conservation form with v(x.l) converging almosi everwhere to
u(x.1). then u(x.t) is a weak solution of Eg 1.9. The theorem of Harten. Hyman.
and Lax [23] states that il the scheme is monoione in addition to meeting the crite-
riz of the Lax-Wendroff theorem. then Oicinik’s entropy condition is satisfied for all
discontinuities of #. Thus a monvtone scheme satisfies the comergence aiteria for a

unique solution of the iniiial value problem as stated in the Section 1.3.1.

Attention is now focused on how the properties of a monotone scheme are help-
ful in constructing Harten's second order TV'D ~chieme. Hatten states that monotone

schemes provide second-order accurate soluiivns to the modified Eq {22}

we &+ flud = M v, M (120
P&, 2 a .
Hu, \) = N Z FlHiu.... u)— XNa*(u) (1.22)
=N =k

IHu. My =0

JHu. N #0

Wbty




where 3 is a numerical dissipation term. Since 3(w.A) # 0. monotone schenies are

only first-order accurate approximations to the initial value problem of Eq 1.9.

Suppose the scheme given by 15¢ 1.10 is a monotonce schenie and thus provides
a second-order accurate numerical approximation to the modified equation, Eq 1.21.

rewritten as

ue+ (f = (1/A)g), =0 (1.23)

where ¢ = Aaf(u, \)u,. Applying this scheme to the following equation
ug +(f+(1/N)g), =0 (1.24)

yields a second-order accurate approximation to its modified equation. Sincey = O[Au]
the modified equation satisfies [22]

wt fo =0 [(22)Y] : (1.25)

Thus, application of a first-order scheme to a scalar conservation law with an
appropriately modified flux function yields a second-order accurate approximation
to the original equation u, + f, = 0. Note that in order to apply the scheme to the
modified flux function, ¢ must be a differentiable function of «. Haiten achieves this
by smoothing the point values of g [22]. This smoothing cnlarges the suppoit of
the scheme such that his first-order scheme. using a three-point stencil. hecomes a
second-order scheme using a five-point stencil. The 1cader is 1efered to reference [22]
for the details of how the three-point, first-order scheme is constructed 50 as to ensuie
its TVD property.

Let us now turn our attention to the specific scalar scheme developed by
Harten. Consider a three-point, finite-difference scheme in conservation form with

the following numerical flux function

Ty 04) =

oo

[f ("’J) +../'(UJ+1) - (l/'\)Q (’\(-l’J+l/‘2) -’3]+1/2‘U] (1.26)

9




where Aj41/00 = vjy — v; and

@ = [f(eim) = T /Dy0p0 (Bjarpv #0)

(1.27)

=_ a(v;) (Aj.H/Qv = 0)
Q is a function known as the coefficient of numerical viscosity. Numerical viscosity
is the mechanism that allows a discontinuity to be captured as part of the numerical
solution [20]. This is in contrast to shock fitting, where the discontinuity is considered

as an internal boundary.

Lemma 3.1 of reference [22] states that the above scheme is TVD under the

Courant-Friedrichs-Lewy (CFL) condition

Amax lﬁ;‘+,lgl < (1.28)
J
given
el < Q(a) < 1 (1.29)

for 0 < || S <l

The first-order accurate three-point scheme given by Eq 1.26 is converted to
a second-order accurate scheme by applying the three-point scheme to modified flux

values _/'J'i” [22]:

SN = [ (e) + (1), 9 = 9 (Vj-1, 05, v351)

P = e+ ez ez = (Goen = 95) [D54120

(1.30)

where 7 = Aa. The modified numerical flux is

R = 5107+ 50 = 070Q (72) By oe]
s () + F(vm) (1.31)
+(1/(24)) [gf + g1 — Q (171+1/2 + “/J+1/2) AJ-H/QU]

10




Lemma 3.2 of reference [22] provides that Eq L.31 represents the numerical flux

of a second-order scheme so long as Q(.v) is Lipschitz continuous and g, satisfics

95 T 9iy1 = {Q (’7j+1/2) - (’7j+1/2)-} A0+ O[2) (1.32)
Yirr/2Djrrpt = gyar — g, = 0 (A7)

Harten [22] constructs ¢ in the following manner so as to satisfy Eq 1.32:

gi = Sjyi/2 Max [O,min (]gj+,,2 Gy=1/2 " .sJ+1/2)]
(1.33)
= sjy1/2min (|§j+1/2| ; lf/f—l/'zl) (54172 G5-172 2 0)
= 0 (f/jﬂ/z “gi-12 S 0)
where )
on = o un) )] B

Sjp1/2 = Sgn ('()j+'/2)

Finally, Lemma 3.4 of reference [22] provides that a conservative finite differ-
ence scheme, with the numerical flux given by Eq 1.26, is TVD under the testriction
of Eq 1.28 so long as Q(r) satisfies g 1.29. Thus a second-order accurate (except
near points of extrema where s/, is discontinous), five-point scheme has heen con-
structed for the solution of Eq 1.9. The scheme provides high resolution capturing

of discontinuities and converges to a physically relevant solution.

1.3.3  Exlension to Sysicms of Conscrvation Laws. We now concern omiselves
with extending the scalar scheme developed in Section 1.3.2 to systems of conserva-
tion laws. Currently, TVID schemes are only defined for scalar hyperbolic conserva-
iion laws or constant cocfficient hyperbolic systems. This is due to the fact that the
spatial tolal variation of the solution to a system of nonlinear conservation laws is
not necessarily a monotonically decreasing function of time [46]. Wave interactions
may cause the total variation to increase. Ifarten extends the technique using a gen-
eralized version of Roe’s approximate Riemanu solver [22]. The idea is to apply the

scheme in a scalar fashion to cach of the systems linearized characteristic variables.

11




After Harten [22], let

$(u) = (R'u),.... R"(u)) (1.35)

be a matrix whose columns are the right eigenvectors of the Jacobian matrix A(«)
in Eq 1.1. It {ollows that

St4s5 = A (1.36)
where A is the diagonal matrix of eigenvalues such that .\,, = a'(v)§,,. Therefore

Sl 4 ST A()SS = 0 (1.37)
or
S~y + AS"u, =0 (1.38)

where the chiaracteristic variables w are defined such that
w=S5""u (1.39)
g 1.38 becomes
w +Aw,=0 (1.40)

which can be decoupled into m scalar characteristic equations with 1 < F <m

wh + et =0 (1.41)

The most beneficial use of the characteristic variables comnes to light by rec-

-ognizing that they can be viewed as the components of « in the coordinate system
{R*} such that [22]

m

"= Z w ¥ (1.42)
k=1

Harten uses this fact to extend his scalar scheme to general nonlinear systems of

hyperbolic conservation laws.




Let af,,/, be the component of A4y /o0 = 4y — v, in the {R*} coordinate

syvstem-such that
m

Djprye = ZQ§+1/21?§.+1/2 (1.43)
k=1

The scheme given by Eqs 1.30-1.34 is extended to general systems as

U;-“H = U}‘ - A ( ‘Jn+l/2 -. Jn_l/2> (I‘H)
fj+1/2 = }E[f(vj) + [ (vj41)] (1.45)
m pk ko k ok k - a
+35 Lie R [gj + 91L+1 - Q* (l/.;:“}‘!/? + A"’J‘H/')) C“.}:LH/?]
where vf,,, = Ak, and
gj:' = s;'-'“/g max [0, min ([-‘751'-1/2! .g‘jﬁ_,,2 . '$5+1/2)] (1.46)
with
~L e f e —ls 2 k
Fap = 3 [QL ("§+1/2) - (”;»:«1/2) ]QJH/?
K - o ~k
sop = s9n(fhp) (1.47)
Kk - 3 8 &k q
,’JI".;.UQ = (.(/j+1 - .(/f) /Oj-s-l/’z (O.I;-i-l/'-’ a 0)

1.3.4  Entropy Enforcement. As a final comment on the initial development
ol Harten'’s second-order TVD scheme. we tuin now to the question of physically
relevant solutions for systems of equations. \s mentioned in the previous section.
the total variation may not be a monotonic decieasing function ol time due to wave
interactions. In addition, Oleinik’s entiopy inequality ensures physicalls ielevant. o
admissable, solutions only in the imit as Au = 0. In reality we are concerned with

obtaining admissable solutions on a relatively coarse mesh.




In order to arrive at a proper criterion. Harten examines the Riemann initial

value problem [22] for Eq 1.1:

w(z.0) = dé(z) = u <0 (1.48)
= up +>0 '

with uy, and wp satisfying the Rankine-Hugoniot relations with wave speed 5. I
w(x,t) = o(x — st) is to satisty Oleinik’s inequality the numerical scheme must yield
a steady progressing profile with a narrow transition from uy, to up {20, 22}. Harten

refers to this property as resolution.

If the solution u(wr,t) = ¢(v — s1) is inadimissable. then the solution is a fan of
waves [22]. This fan of waves is a function of x/t and consists of a rarclaction, or
expansion, wave in the same field as the initial discontinuity. The physical solution
requires the initial discontinuity break up instantacously, since w(x,t) = o(¢/t).The
term enfropy enforcement vefers to the requitement that the numerical scheme break

up the initial discontinuity at a fast rate, thus imitating the physical behavior [22].

The systems of conservation laws under consideration contain two types of
characteristic fields, termed nonlinear and lincarly degenerate by Harten [22]. The
nonlinear fields are defined such that «¥R* # 0, while the lincatly degenerate ficlds
are defined by «® R¥ = 0. The waves of a nonlinear field aie shock waves o1 expansion
waves while the waves of a linearly degenerate field are solely contact. or entropy.
discontinuities.

To address the question of entiopy enforcement. consider the scheme given by
Eq 1.26. which has the effective numerical viscosity coeflicient

B, \) =  [Qur) - ¥ (1.19)

[

The least dissipative form of Q is arrived at by choosing it to he consistent with
g 1.29 such that

Q) = [ (1.50)
With @ given by Eq 1.50, the scheme of Eq 1.26 can be rewritien as [22]

%

1] - - n — ’*. A n -
vf'“ llj'-(l/_,.;.l/-z) Appr/2l —(IIJ_|/2) At (1.51)

RRSTR L




where

vT=min(r.0) =3 (v —|v]) ¥ =max(r,0)=1(v+|v]) (1.52)

[ L

Harten points out that the scheme of Eqs 1.51 and 1.52 is a gencralization of the
Courant, Isaacson, and Rees scheme, which has been thoroughly analyzed in the

literature. The interested reader is referred to reference (22! for further details.

If the scheme given by Eqs 1.31 and 1.52 is applied to the Riemann problem
with the Rankine-Hugoniot relation satisfied by letting the speed of propagation be
zero, Eq 1.31 holds the initial discontinuity steady regardless of eatrops consider-
ations. In other words. the initial discontinuity is not broken up and thete is no

-entropy enforcement in this-case.

The problem is that the numerical viscosity vanishes for v = 0. Harten elimi-
nates this problem by modilving Q(x) = |¢] near x = 0 to be positive. The modifi-

cation is as follows [22] for 0 < ¢ < %

Rx) = (2*/(de))+¢ || < 2

= Rkl klz2e

with the entropy correction parameter. ¢, tvpically of order 0.1.

Harten summarizes the results of numerical experiments carried out with the
schemeof Egs 1. 14 and 1,15 applicd Lo the Euler cquations for the Riemann problen.
These experiments used ¢ = 0.05, 0.1, and 0.25 for all fields, and also ¢ = 0 for the
lincarly degenerate field. Basically. highly resolved shocks were obtained for all values
ol ¢ under consideration. The contact surface was better resolved than with the first-

order accurate scheme of Egs 1.31 and 1.32. but still remained rather simeared.

To prevent excessive smearing in the linearly degenerate field containing the

g
contact surface. Harten replaces Eq 146 in the lincarly degenciate field with [22;
g =3, + 03, (1.54)

where §, is the right hand side of g, given by Eq 146 and. g, is

.’7; = S max [0, min (SO’_,_U-_\_(,Y‘,_‘/Q.'7'J+|/2 lcr”./-_)l)] {(1.55)




with

g1t (0472)

{}'J+l/o = 054172 (I/J.* l/") E [ (”J-rl/")]

0; = lc‘m/ “‘:-l/’l/(l Ayt I*!“J =172 I)




II. Inwviscid Analysis

2.1 FEuler Equations

The Euler equations are statements of the conservation laws for mass, momen-
tum, and energy assuming an inviscid. nonconducting gas. When the Euler equations
are arranged such that p, pu, pv, and ¢ are the dependent variables the conservative
or divergence form is obtained. Lax showed that the conservative form of the Eu-
ler equations satisfies the weak solution of the Rankine-Hugoniot relations and thus
correctly predicts the jump conditions across the shock discontinuity [1. 35]. In fact.
use-of the corservative form is necessaiy for the discontinuity to represent a physical
wave when shock capturing schemes are applied {1}, The conservative form is often
referred to as the divergence form because the equations identify the divergence of
physical quantities. The governing equations may be wri. .. in the following vector
form: ) ) .

ou- ar(l) aG{U) _
ot dx Oy

where 7 contains the dependent variables which are the density, p; x-momentum.

0 (2.1)

pu; y-momentum, pr: and total energy per unit volume, e. I contains the flux terms
differentiated with respect to x. and ¢ contains the flux terms differentiated with

respect to y. The elements of {7, /7, and ¢ are:

p m n
3
m m-/p-tn niu
U= pa| M|l (2.2)
n mv n?lp+p
el Lwsomin ] et nmin ]

where m = pu and n = pr. The pressurve. p. is given ag

2, 2
p=(r-1 e~ E0) (23)
2p

for a thermally and caloricallv perfect gas.
3 A &

A general spatial transformation of the form € = E(x.y) and n = y(x.y) is used

to transform Eq 2.1 {rom the physical domain (r.y) to the computational domain

7
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.n). The strong conservation law form of the Euler equations is now given by [-13
2] 3 | 3 AN}

or okl . oGy

ET 913 an
G=UJJ
F=(&F +6G) 1)
G = (.l +1,G) /7

J = ‘Sr")y - fy’l:r

where .J is the Jacobian of the transformation.

(2.4)

—~
SV
It

—

—
| O]
-1
—

—
[
oL
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Since the TVD method used herein utilizes the local-characteristic approach.

which is a generalization of Roe’s approximate Riemann solver[36], the Jacobians A

and B of F and G are required and can be written

as
A= (&A+E,B)
B= (n-4 4+, 3)
where
i 0 1 0
o= (e 4= o2 3— I — =)o
= Py = ( ) (u? + %) (3= ( )
—-utr 4 ]
] [{;(*f— ) (u? -+ 02 II] u = =1 (1=75)w
[ 0 0 I
—ur { {4
B=Cp=
sr-DP+e) =t (=9 (3-7)e
_kg-nm-u)~n] (I = Jur H=(v—=1)?

'3
H




with the total enthalpy, f, given by

The eigenvalues of A. denoted (aé:a;'f,ag, (1‘6‘), are

Exie 4+ §yv — ke
§xtt + §yu

ag =
Exu-tEyu -+ kec

Eru+&yu

where
ke = /& +&

The right ei;genvectors of A, (Ré, R, 12, Rg), are

L [
R u-—ke B = u
§= ¢
v—lac T
H = lyue = kyve | s(u? + o)

| 1 0
- u [|'|C ] ._.I.-,2
R; = Ri=
[ L'-!C I;
/u'| - l‘-:ll

i H + kyue + Isee ]

where

(2.13)

(2.14)




and

VRCETER
ky = %‘1/\1‘ (é}) -+ (6—7') {2.16)

The cigenvalues and eigenvectors of B are obtained by replacing & in Eqs 2.12

through 2.16 with 7:

Nett + v — kye

Nplt =+ 7,

iy, = (2 | 7)
Nett -+ Nyt + hyc
U
by = ‘\/1];’. + 0 (2.18)
[ 1.0 1 1.0
uw—kyc u
R = ' R =
v —kye v
L H — lyue = Inee %(uz + %)
(2.19)
1.0 0.0
u 4 kye —ka
1 = Rl =
v+ ke Iy
I+ kyue & kyie ke = ksu

LN AN o
=17 /\/(/) (1) (2.20)

L |m /za)".-- .L) -
k=3 V(./ ‘(./ t2.20)

L.

2.2  Numerical Procedure

2.2.1 I1-D Roe. Lax-Wendroff. and TVD Algorithms. The 1-1) schemes under
consideration are the first order accurate Godunon -ty pe {22] scheme of Roe. referred

to as the ROE scheme: the second-order accurate Lax-Wendroff-ty pe scheie. referred

20




Table 2.1. Dissipation Terms for ROE. LW and ULTL1C Schemes

Scheme | Description Dissipation (.3)

ROE Ist Order TVD

2
T2 = i “/>|“1~:/°

LAV 2nd Order non-TVD I = (VJ'-",:,I /2); of 1

B = Q" (Wi '1—-1/’) osape = (0f ’:“9;:-1)
ULTIC | 2nd Order TVD with Eqs 1.54 through 1.58 applied

to the linearly degenerate field

to as the LW scheme: and the second-oider accurate TVD scheme of Harten, referred

to as ULTI1C. All three schemes can be written in the form

)yt =l = ) (f,g/z - fj~'/2)
e =14 {f(b';) + /1 (e) = T By RL‘ml

with the appropriate dissipation term. 3. from Table 2.1

2.2.2  2-D Harien-Yee Finite-Volume Algorithin.  An upwind TVD scheme
in finite-volume form [45] is used in the present sindy, The grid spacing is denoted
by A& and Ay, such that § = JAL and p = LAy, Vtihizing the Strang-type fractional
step method allows the scheme to be implemented in o local-characteristic approach

and ensures second-order accuracy:

o2 -?«I-‘ -1. -:, vy -,. 3
lJ’fk = Le: . L,: l {2.23)
where \
iren A N _ fem 9 9.
Lir.ﬂ- - l - l;-l‘ “\e (rﬁ!;.l- I:—'-J.-) (2.24)
A : H




/.Z (2.25)

t‘“:
wy?
»
]
|
”T
I
-.‘.“u
N

with & = At Application of the entire sequence of uperators (one iteration) advances

the solution two time levels. The functions /~ pand G kel A€ the numerical fluxes

FE}
3.
2

in the £ and 5 directions evaluated at cell interfaces. For instance. Fiiipin Yee's
2 ’ 2'

finite-volume formulation is expressed as

]?_'I'*":v_v'.' = {’.[(%&) ([JL ¥ -lf} ( J__!_(GJ;-TGJ-!-II} ( G)
. NE , LA
.;-I:-/?{-ﬁ% ‘r)ﬁ%/']-":'!z‘}

where the subscript j + § is a simplified notation for j + 1,k The numerical flux

function in the 5 direction is defined similarly:

(), Frat B+ (5),., (G Goan)

« 3
'1",_\—‘"?,, L -t-’/l %l

e
E
ohe
ape
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The eigenvalues and eigenvectors are evaluated at cell interfaces using sym-
metric averages of U p and [z 6. Ue and [, pey. respectively. Roe's averaging

technique for a perfect gas is used herein and iakes the form [36]

_ Duycyg+ 1,z

S R ) IO 2251
s = De 1;)1 :‘; (2.29}
D”z-i-!.i' < [ & P,
”,-+f:-‘ = >[)-§-l * (230
P =17 [ Y PR 3
Cabe = (-1 { prba T :j\"ﬂ-%.f- : ';-E-%.K} i

where
D = \/p,srslpo (2321

Roe’s averaging technigue is used because it has the computational advantage of

perlfectly resolving stationary [16], but not necessarily moving. discontinnities.




-V,

The quantities (5,’5) and l/JH_% are defined as follows for the finite-volume

_ j+t
formulation

X 1 £ X

(&) :3[(.6.,.) +() ] 2

REEAFE T T R 8 Y gLk
1 1 1 1

= — 4 — 2.34

Jipr 2 (']J'HJ»' JM) (234).

The constants (k). .1 and (l.'g)H_% necessary in determining R{)”, Eq 2.15, are
2

Itz
defined as

( J ) +1

it3

and

2

L
\/(&):#— + (%);%

14
The vector function @, +1 05 composed of elements denoted as (o; +|_> for a

second-order upwind TVD scheme. The elements are given by

where. with A = AL/A¢

l I 5 9a
Vgl = ,\(Lj+;_ (2.38)
Q)41 is the difference of the characteristic variables in the £ direction.
=R\l ;. 9
Oy = RL (Ui = Ua) (239)
or i .
: - -
Q5+l (aa — bb)/2
2
o A - aa
iy | 2| SotEl (2.40)
3 + 2
Q741 (aa + bb)/2
4
L OJ+§- ] L e -




where

A” _ l J+“ 5 /
aa = c [/’\‘j-:«‘;e‘*‘ 2 3 '..\JTxp—t11+!2_Aj+;_)7z-v”lz 4L (2.41)
J4t <
bb= —— kA ) o
= [ 1A m — (]\lllvj-f-,{; + zvﬁ%) Aj+;_p+ I»QAH%_n] (2.42)
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L\j+;—3 = ZppLk Tk (2.44)

The difference of the local characteristic variables in the 7 direction is ubtained in

similar {ashion:

Qpel = R;;_% (Ujkgr = Uja) (2.45)

a;l;.,_;_ (dd — ee)/2

2

Oy Apip—aa
FE = (2.46)

afyy (dd + ce)/2
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with
nr
(T)Lr% 5 =

(1”1)!.+‘5 = (2.50)




(h2)pypr = (2.51)
bt 3 (&)2 N (n”)l
URAER) aTE
Ak.,'.,:-;: = Skl TSk (2 52)
The function Aj il is given by
{ (-’llu‘gl) {
ag </\(1 . 1) —!_1_1— (O i # 0)
! — J+5 a]_*l J+2 9 e
Afj.*.;_ = 2 (-)3)
where |
o(x) = 5 [Q(x) - #7] (2.54)
and
|| (lz] 2 2¢) o
Qz) = (2.55)

(22 (4e)) +¢  (J] < 2¢)

The entropy correction parameter, ¢, is generally fixed during computations, but can
1 o v (=)
vary between 0 and 0.5.

The function g; in Eq 2.37, initially referred to in Section 1.3.2, is termed the
“limiter’ function and can be expressed in a variety of ways [13]. The present study
hases the choice of the limiter on the ty pe of characteristic ficld under consideration.

2

For the nonlinear fields, a'R! # 0, Eq 4.3dd of Yee [45] is used:

L _ (1 1 [N 1 ! 5 =
g; = (OH';-QJ-‘% + IO.H'%OJ—’; ) / (O.H'!j +0j—-‘_—;) (2.36)
For the linearly degenerate fields. o' Rf = 0. Eq 1.34g of Yee [45] is applicd:
¢\ = 5 - max [0 min ('9‘(\’ [ $.al ) min ('a' .l 25 - al )] (2.57)
-/J . . . < J+".; .- _I—% . s+t . Lo 4 _!2_ 2.
where
S =sgn (a‘, _;_) (2.58)
i

The nonlincar fields correspond to [ = 1 and | = 3 while the lincarly degenerate

fields correspond to [ = 2 and [ = 4. It should again be noted that the waves of a

(R
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-nonlinear field are either shocks or rarefiaction waves while the waves of a linearly
degenerate field are uniquely contact discontinuities [22]. Since this is a five-point
scheme, the values of g; are nceded at cell centers just outside the computational
domain. Zeroth-order extrapolation is used to ubtaiu the necessary values, following

the example of Harten [22].

2.2.3 2-D Harten-Yee Chain-Rulc Algorithm.  In addition to the finite-
volume formulation of Yee, a finite-difference form based on the chain-rule con-
servation form of the governing equations was utilized [10]:

oUu F(L) dG(L) oI l) IG(U) o
——— £ L L B . = '.)..\.
En + & ¢ + &, PT 1, o + 1y o 0 (2.59)

Previous researchers report that the governing equations in this form are more com-
putationally efficient than the stroug couservation form used in the finite-volume
approach [40]. This was found not to be the case for the current TVD algorithms,
with both formulations performing approximately the same in terms of computa-

tional efficiency.

The local characteristic approach given by Eq 2.23 is now applied to U instead

of [I:

[l';ff-z - ‘h/ Lh thLh/ [ (2-60)
where

_ki .
h n = n Satl] v
bym = U= (/ 1.,,%_) (2.61)
Al .
~J; v- = . O
LU= U= 3, (Crpes - ,_,_k_%) (2.62)

The numerical fluxes, [, r , and ¢, 1. for the chain rule conservation form are
2° 2
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and
Ay 1 ) . . Al] A
Crist = 5 [0e)n Fipe 4 Frieer) + (), 1 (G + G ) + 7y sy | (269)

The quantities (51-)J+L~ (& )H_;_, and (:162)]_:_!_ are defined as follows for the chain rule
: 2 2 2

formulation:




[II. Inwviscid Results and Conclusions

Chapter II details application ol the Harten-Yee TV'D algorithms to three
different classes of problems. Riemann’s problem of gas dynamics is covered first. A
shock wave. rarefaction wave, and contact surface are present to test the capability
of the TVD algorithm to resolve the features of both linear and lineaily degenerate
fields. Both Harten-Yee algorithms degenerate to Harten's ULTIC scheme for this
case since there are no metric variations. In addition to the ULTLC scheme, solutions
from the Roe and Lax-\Wendroff schemes are presented to provide the 1eader with a

performance comparison.

Steady-state flow through a supersonic cascade of wedges is then examined
using the Harten-Yee finite-volume scheme. Both shock and expansion waves are
present in this test case. Finally, flow through a typical transonic turbine rotor
is considered. This test case is used to demonstrate the capability ol both the
finite-volume and chain-rule algorithms to deal with transient stait-up phenoinena
in route 1o a steady-state solution. Boundary and initial conditions utilized for these
solutions are discussed at length to provide an appreciation of how they complement

the physical nature of the TVD schemes.

3.0 Ricmann’s Problem

Solution of Riemann’s problem [9] provides a means for evaluating the ability
ol a scheme to resolve the waves present in both nonlinear and lincarly degenerate
ficlds. The Roe (ROE), Lax-Wendroff (I\W). and ULTIC schemes are applied 1o
Riemann’s problem in order to compaie their petformance. Solutions aie compared
with those of Harten, who utilized the same schemes [22], as a check for correct

implementation of the algorithms.

o
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Riemann’s problem is now solved for:

U, <0
U(x.0) = (3.1)
Up >0
where
0.445 0.5
U, =1 0.311 Up = 0 (3.2)
0.8928 1.4275

These conditions establish a leftward moving 1arefaction wave, rightward moving
contact surface. and rightward moving shock wave. Figures 3.1-3.9 show the results
.obtained when the ROE, LW, and ULTIC schemes are applied to this problem. It
should again be noted that ULT1C is the degenerate form of the Harten-Yee scheme
{or the 1-D problem with no metric variations. The circles are the computed values
while the solid line delineates the exact solution. The calculations are consistent
with those of Harlen [22] in that they were carried out to 100 time steps with a CFL
restriction of 0.95 using 140 cells. In addition. a value of ¢ = 0 was used for the
TVD schemes with Roe averaging used only in the ULT1C scheme. For the one-
dimensional case. Roe averaging seems to be of benefit only when accurace resolution
of the contact surface is desired, and then changes the result only slightly by biinging
the density at the leading edge of the contact surface to its correct value one giid
point sooner. Values of ¢ between 0 and 0.25 seem to produce almost identical
results except that ¢ = 0 seems o enhance the resolution of the contact suiface in
the ULTIC solution. This is consistent with Harten’s observations. Overall. the

results of this investigation seem to be almost identical with those of Haiten.

Figures 3.1-3.3 show that the first-order ROE scheme provides a fair resolu-
tion of the shock, but does rather poorly in resolving both the rarefaction wave
and the contact discontinuity. Note, however. that the ROE scheme is TVD and

{hat its monotonicity preserving property prevents oscillation of the solution at the
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Figure 3.1. Density from ROE Scheme Applied to Riemann’s Problem

o

discontinuities.

Iligures 3.4-3.6 show that the performance of the non-TVD LW scheme leaves
much to be desired. Not only does the non-monotonicity of the scheme canse se-
vere oscillations at the contact and shock (liscont.in.uit-ics, but oscillations are also
occurri.hg at the trailing edge of the rarefaction wave. Harten, Hyman, and Lax [23]
point out fhat Lax-Wendrofl schemes can produce non-physical solutions. even when

attempts are made to construct a physically correct entropy function.

Figures 3.7-3.9 clearly display the improvements of the second-order UVLTIC
scheme over the first-order ROE scheme. The resolution of the shock. rarefaction
waves and contact surface is quite good. It should again be noted that a value of
¢ = 0 and the use of Roe averaging are important for resolving the contact surface

as accurately as possible.

Figures 3.10-3.12 show the results obtained when ULTIC is applied to a dif- .

ferent set-of data for Riemann’s problem, the solid line again representing the exact
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solution. This data is physically representative of a shock tube with

] 0.125
=10 lip= 0 (3.3)
'2.-")_] 0.250

The calculations in this case were carried out to 30 time steps under the CFL restiic-
tion of 0.95 with 100 cells. consistent with [larten [22]. The results show excellent
resolution of the contact discontinuity as well as the rarefaction and shock waves.

The results appear to be identical with those of Harten.

3.2  Boundary Conditions for the Inviseid Studies

Appropriate boundary conditions. in conjunction with initial conditions and

flow parameters such as Mach number. are necessary to arrive at the particular

solution of interest. Boundary conditions for both the supersonic and tiransonic
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cascade flows, to be discussed in forthcoming sections, are now described in detail.

3.2.1 Inlet and Exil Boundary Conditions. If the inlet velocity is supersonic,
all charactieristics originate upstream of the computational boundary so the four nec-
essary flow quantities may be specified. Likewise, if the outflow velucity is supersonic
all characteristics originate inside the computational domain and the four necessary
exit quantities must be extrapolated from the interior. Second-order accurate ex-

trapolation is utilized in the schemes under consideration.

Subsonic inflow and/or outflow presents a more complicated situation. In ap-
plving the boundary conditions at the inlet and exit of the domain, it is assumed
that these boundaries are sufficiently distant from the cascade so that planar wave
disturbances propagate collinearly with the stream function. The disturbances are
required to leave the computational domain without reflection, except for the re-
flection of pressure disturbances at the exit. For subsonic inlet velocities, the inlet
boundary conditions are arrived at by first assuming that the inlet is part of an
imaginary duct extending infinitely far upstream of the cascade. All waves1adiating
from the computational domain should pass the inlet, without reflection. and con-
tinue travelling upstream for all time. Specification of a constant thermods namic
state al upstream infinity requires the expansicn distuibance travelling sipstieais (v
behave as a simple wave. This behavior allows the application of vne-dimensional

characteristic theory at the inlet [16].

For subsonic inflow, only one characteristic runs from the interion of the domain
towards the computational boundary. Therefore. three quantities muusi be spedified
while one may be extrapolated from the domain interior. Far upstream. the total
pressure, p,,. and total temperature. 7, . are specified. while only the inlet flow
angle, 3, is specified at the computational boundary. The speed of sound at the

inlet. c,, is extrapolated from the domain interior. The Riemann imvariant along the




characteristic spanning the expansion wave from leading to t.ailing edge is given by

2

<

2 .
Voo b -——Cu =12 + c2 Lo
v—1

A/.._l

where V' is the magnitude of the velocity vector. As the velocity vanishes [ar up-

stream, the inlet velocity is obtained from

2

Vo =

(Coo = €2) (3.5)
A{ — 1
which, along with the inlet flow angle, determines v and v. The inlet pressure is

determined from the isentropic relation

o )2'7'/(7—1) (3.6)

P2 = Poo (’g—

oo

The speed of sound and pressure fix the state point, uniquely determining the density

and internal encrgy.

For subsonic axial Mach numbers, simple-wave theory is also applied at the
exit. The exit is treated as an open-end duct that exhausts into a plenum, requiring
the exit pressure to match the plenum pressure. Thus. ail pressure disturbances
are reflected back into the computational domain from the exit. Two characteristics
extend from the interior of the computational domain to the exit, while one originates
outside the domain. Thus only one quantity, in this case pressure, can be specified at
the exiv All other quantities must be extrapolated from the interior of the domain.
The quantities chosen for extrapolation are entropy. tangential velocity, and the

Riemann invariant, R,,,. The density is obtained {rom the isentropic relation

ps = (pafsin)!” (3.7)

where s, is the entropy extrapolated from the interior. The pressure and density fix

the state point. uniquely determining the speed of sound and inteinal energy. With
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the tangential velocity extrapolated [rom the interior, the axial velocity is obtained

by applying the Riemann invariant in the axial direction:

2

Uz = Riyy —

o 103 (38)

where
2
Ry = Ui + ';_Tcint (39)
and u,, and ¢, are the axial velocity and speed of sound at the point inside the

domain where the Riemann invariant is evaluated.

3.2.2  Periodicity and Bladc Boundary Conditions. Only one blade passage of
an infinite cascade is analyzed. Therefore, periodicity conditions are applied at cell
centers, or ghost points, located outside the computational domain. These points
are located along the outer boundary and also along the wake cut when a C-type
grid is utilized. For an H-type grid, ghost points are located along the upper and
lower boundaries upstream and downstream of the blade. At the blade surface, the
only condition that can be specified is the requirement for surface tangency. Since

the blade surface is mapped to a constant 5 coordinate, the normal component of

velocity is given by
ety

V, =
' U

(3.10)
while the tangential component is

Iyt = e

— = (3.11)
N

The requirement for surface tangency is met by setting

Vio = Vi, (3.12)
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and

V"J.o = _V;l“ (313)

where j is the £ index, 0 represents a ghost point just inside the body, and 1 is the
index of the first cell center above the body. Cell centers and ghost points are used to
place the blade surface along the interface of the grid cell and ghost cell. This mesh
system helps ensure both consistent and conservative boundary conditions [35]. The
inverse relation between the Cartesian velocities and Eqs 3.11 and 3.10 then gives

13,0 1 My N ‘/‘;,o

—— (3.14)
v50 \/;]f + Ty | =M= Ny V;l,_o

The pressure at the ghost points is obtained by applying the normal-momentum

equation at the first line of cell centers above the body [33):

—p (& + &) (sue + myve)” = (128 + &) pe + (713- + ’)3) Py

= payni+ 72 (3.15)

Central differences are used for both the & and 5 derivatives.

One additional property is needed to fix the state of the ghost points. In the

present study, an adiabatic wall condition is chosen to provide this final property:
T, =0 (3.16)

Although it is inconsistent with the Euler cynations to specify either the temperatute
or its gradient at the blade surface [33]. an adiabatic wall condition has been used

by others [33] and yields results that agree well with theory and experiment.
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Figure 3.13. Grid for Cascade of Wedges

3.3 Cascade of Wedges

The cascade of wedges, previously examined by Denton [12] using his opposed
difference scheme, is used to demonstrate the ability of the finite-volume TVD scheme
to capture well defined oblique shocks. This cascade is shown in Figure 3.13. The
cascade has an inlet Mach number of 2.0 and is designed such that the leading-edge
shock is exactly cancelled upon reflection to the upstream corner, resulting in uni-
form flow between the two parallel surfaces. The grid used consists of 124 points in
the axial direction and 10 points in the tangential direction. Grid points are clustered
near the blade surface in order in improve the accuracy of the solution to the normal
momentum equation, used to determine the pressure at the wall {33]. Results were
obtained using ¢; = 0.2 for the nonlinear fields and 0 for the linearly degenerate fields.
The computed pressure contours are shown in Figure 3.14. The shock that forms
at the leading edge is well defined as is the reflected shock from the lower surface.
Cancellation is achieved at the upstream corner resulting in the desited uniform flow
between the parallel surfaces. This is in sharp contrast to the authors™ experience
with the MacCormack scheme which, due to shock smearing, places the reflected
shock upstream of the corner allowing a weak shock to be reflected back across the
passage [15]. Figure 3.14 also shows the well defined oblique shocks occuring at the
trailing edge as a result of the periodicily condition. This shock structure is simi-

lar to the tramline shock structure [12] that can occur in a transonic turbine rotor.
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Figure 3.15 contrasts the exact and computed solutions in terms of Mach number
versus the non-dimensional chord length. Circles and squares denote the numerical
solutions along the lower and upper blade surfaces, respectively. The solid line rep-
resents the exact solution. Unlike most second-order shock capturing methods, the
TVD sheme does not display the dispersive errors, manifested through oscillations
of the solution, that typically occur near points where shock and expansion waves
are generated or reflected [15]. An exact solution for the expansion along the lower
surface was not presented by Denton, but was computed by the author. Denton [12]

attributes the exact solution to Brown Boveri & Co. of Baden, Switzerland.

3.4 High-Work Low-Aspect-Ratio Turbine

The finite-volume and chain-rule schemes were also applied to a transonic rotor
cascade designed by NASA [42]. The experimental turbine is a 0.767 scale model of
the first stage of a two-stage, high-pressure turbine designed for use in a high-bypass
ratio engine. This model was tested in the NASA Lewis Research Center’s Warm

Core Turbine Test Facility [42].

Figure 3.16 shows the mean-line velocity diagram obtained from the NASA
experiment. In the figure, V' is the velocity in a stationary frame of reference, 1’
is the velocity in a frame of reference moving with the rotor, and ¢r is a condition
corresponding to a Mach number of unity. Subscripts 1, 2, and 3 correspond to
the stator exit, rotor inlet and rotor exit respectively. Using the mean-line hiade
coordinates from reference [42], and the relative gas angles from Figure 3.16. the (-
type grid shown in Figure 3.17 is constructed. The grid is made up of 177 x 20 points.
again with points clustered near the surface for improved accuracy in applying the
boundary conditions. The rounded trailing edge is replaced by a cusp to prevent
the severe expansion around the blunt configuration. This was found not to be a
necessary requirement on the trailing edge geometiy, and solutions weie obtained

for a grid where the rounded trailing edge was left intact. Points are also clustered




Figure 3.14. Wedge Pressure Contours
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at the leading and trailing edges for improved resolution. 21 points are placed along

the portion of the C-type grid representing the inlet.

The inlet and exit condions necessary for input to the code are derived from
the NASA test data [42] given in Table 3.1. In the table, ¢ identifies total properties
and R denotes a frame of reference moving with the rotor. Conditions at station I,
the stator exit, are taken to be the conditions also existing at station 2, the rotor

inlet.

Consistent with subsonic inflow at the computational inlet, the total pressure
and total temperatutre in the quicscent region infinitely far upstream of the cascade
are required as boundary conditions. The values used are p,, = 29.32 x 10*N/m?
and T, = 420.2K. The static pressure at station 3, the rotor exit, is input as the

exit pressure. In particular, p3 = 12.05 x 10" N/m?.

3.4.1 Numerical Solutior. The initial conditions applied for the present study
are referred to as “cascade tunnel start” conditions because of the analogy to the
starting of a blow-down cascade tunnel. The domain is initialized at zero velocity,
the pressure and temperatute corresponding to that in the quiescent region upsticam
of the inlet. This is analogous to placing a diaphragm at the exit of the computa-
tional domain. At time {y, the solution is started and a centered expansion waive
propagates upstream. It is also possible to place the diaphragm anywhere in the
computational domain, but placing it at the exit avoids the formation of a contact
surface that must pass through the domain. While the present TV'D scheme has
demonstrated the ability to resolve such a contact surface in very fine detail. con-
vergence is slowed due to the fact that the contact surface progresses through the

domain at the convective velocity.

When the cascade tunnel start is used and the diaphragm is placed at the exit of
the computational domain, a centered expansion wave propagates upsteam through

the blade passage and towards the inlet.  As the leading edge of the cxpansion




Table 3.1. NASA Turbine Test Data

=14 Ratio of Specific Heats

T, =4222 K Inlet Total Temperature (Absolute)

Py, = 31.03 x 10" N/m? | Inlet Total Pressure (Absolute)

Py /p2 = 1.704 Inlet Total to Static Pressure Ratio (Absolute)
Pun/Ps = 1.652 Inlet Total to Exit Static Pressure Ratio (Relative)
P /P, = 2.360 Inlet Total to Exit Total Pressure Ratio (Absolute)

(V/V,), =0.888 Inlet Critical Velocity Ratio (Absolute)

(V[ V) = 0.384 Exit Critical Velocity Ratio (Absolute)

(W/W,), = 0.381 Inlet C'ritical Velocity Ratio (Relative)

(W/W,..); = 0.341 Exit Critical Velocity Ratio (Relative)
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wave reaches the leading edge of the airfoil, circulation is established around the
blade through the shedding of a starting vortex from the airfoil. Since vorticity is
related to the entopy gradient per Crocco’s equation, entropy contours can be used
to highlight regions of vorticity. Figure 3.18, a plot of the entropy contours after
1000 time steps, clearly shows the starting vortex that has been shed by the airfoil.
The vortex is convected downstream and eventually exits the computational domain
without being reflected. Figure 3.18 also provides a graphic representation of the

periodic behavior in a cascade flow.

Steady-state solutions obtained with the finite-volume TVD formulation com-
pares extremely well against the experimental mean-line data. Computational data
is given in Table 3.2 for a C-type grid with 357 x 40 points. Grid spacing is roughly
half that of the grid shown in Figure 6.42 and is utilized in an effort to verify the
location of the stagnation point at the leading edge. Since the stagnation point is
determined by the circulation around the airfoil, the entire grid was refined rather
than just the area in the vicinity of the stagnation region. Computed values are

compared against experimental values through the percent difference:

N '\-‘l
%Diff =2 _1) %100 (3.17)
Xerp

When the solution process was performed using the chain-rule formulation
no noticeable difference in the computed quantities was observed. This level of
agreement provides an excellent argument for the use of TVD schemes in computing

transonic cascade flows.

3.5 Conclusions Based on Inviscid Investigations

TVD schemes, because of their foundation in the mathematics and physics of
hypevbolic conservation laws, are clearly superior to the widely used Lax-Wendroff

family of schemes that solve the partial differential equations without regard to

-1




Figure 3.18. Entropy Contours Showing Starting Vortex




Table 3.2. Computed Versus Experimental Data

. Quantity Experiment Computed % Difference
Pl Ps 1.652 1.643 —0.54
Py, 18.64 x 10* N/m? | 18.98 x 10°N/m? 1.82

(W] W), 0.381 0.383 0.52
(W/W,), - 0.841 0.853 1.43
Exit Angle, _B_s —66.50° —66.75° 0.38

selecting the physically meaningful particular solution. The superior performance of
TVD schemes in resolving rarefaction waves, contact discontinuities, and shock waves
was demonstrated using Riemann’s problem. Solutions for both supersonic and
transonic flows exhibit greatly improved resolution over second-order Lax-Wendioff
type schemes used previously [15, 16]. Solutions also compare favorably with the

available experimental and analytical data.

One important improvement not mentioned previously is that the downstream
periodic boundaries for the turbine analysis do not have to be treated as solid walls
al any poinl during the solution process. Previous experience of the authot and
others {15, 16, 38] showed that numerical difficulties are encountered with the Mac-
Cormack scheme if the cascade tunnel start is used. The downstream boundaries had
to be treated as solid walls until the solution evolved to a point where the flow be-
came aligned with the channel. No such difficulty has been observed with either the

finite-volume or finite-difference TVD schemes described in Sections 2.2.2 and 2.2.3.
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One observation should be made regarding grid cell skewness. While no adverse
effects due to varying aspect ratio were observed for either the finite-volume or finite-
difference formulations, excessive cell skewness in the turbine cascade grid led to a
rather high degree of entropy production. This appears to be unrelated to boundaiy
conditions since the production was most noticeable in the interior of the domain
above the suction surface, where the grid tended to be most skewed. Reducing ¢
to 0 tended to alleviate the problem, suggesting that increased ¢ values tend to
magnify the effect of numerical viscosity generated by cell skewness. The problem
was observed with both the finite-volume and finite-difference formulations, although
the finite-volume formulation tended to enhance the production of entropy. When
the skewness was reduced, no noticeable differences in the selutions using either
formulation were observed. No significant variation in the solutions is observed for ¢
values ranging from 0 to 0.4 in the nonlinear fields, so long as skewness is kept to a

minimum. A value of ¢ = 0 was consistently used for the linearly degenerate fields.

CFL numbers as high as 0.95 were consistently used to obtain steady-state
results. In fact, the CFL number was dropped to 0.5 only if a contact surface was
in the vicinity of the rounded trailing edge of the blade. At all other times the CFL
number was maintained at 0.95. This is in contrast to CFL numbers as low as 0.2
required during startup and only as higi as 0.3 to maintain stability when using the

MacCormack scheme [13, 16].

The data processing rate is 1.2423 x 10™° seconds per grid point per time level
for the chain-rule formulation, and 1.2271 x 10~* scconds per grid point per time levcl
for the finite-volume formulation: the processing rate refers to the CRAY N-MP,/ 216

L4 ) - - . . . -
computer. The solution is monitored until calculations consistently show less than a
0.02% change in the total energy. The time dependent solution is then considered to
have asymptoted to the steady-state solution. A typical, time-accurate calculation
requires approximately 4000 opcrator sweeps to achieve steady state convergence.

This translates to approximately 3.8 minutes of CRAY X-MP/216 C'PU time for the
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177 x 20 grid. When a local time stepping procedure is used, approximately 2000
time steps are required to achieve the same level of convergence. Thus the CPU time
is reduced by a factor of two. A description of the ATEC routines is presented in
Appendix B. Appendix B also summarizes the results of the CRAY FLOWTRACE

option used to obtain a relative performance evaluation of the routines.




IV. Introduction to Part I

4.1 TVD Schemes and the Navier-Stokes Equations

Soon after the inioduction of the TVD methodology by Harten [22] the scheme
began to be applied to the Navier-Stokes equations. The earliest application known
to the author was by Chakravarthy et al. [7] in 1985, followed by Miiller [32] in
1989, Riedelbauch and Brenner [34] in 1990, and Lin and Chieng [25], Seider and
Hanel [39], rd Josyula, Gaitonde, and Shang [24] all in 1991. All these investigations
dealt exclusively with the steady-state problem. Numerous other researchers have
uncloubtedly applied the TVD methodology to the Navier-Stokes equations, but the
author is mainly aware of the above efforts. Most of the effort has been directed
toward the investigation of hypersonic flows, but Lin and Chieng and Seider and
Hinel have investigated the transonic regime through solutions of the thin-layer

Navier-Stokes equations.

The present effort is an attempt to extend the application of the TVD method-
ology in two directions. The first direction is the calculation of unsteady flows. where
the time accuracy of the scheme is important. The second direction concerns flows
where complex wave pheomena are present, but are relatively weak compared to
those of previous investigations. A primary assumption of previous investigations
is that the flows are dominated by inviscid cffects: moderate or stiong shock waves
are present in the flowfield. This assumption allowed investigators to conclude that
solutions far away from the boundary-layer are accurate. even though the effect of
the TVD dissipation terms on the true viscosity in the boundary layer remained un-
known [45]. Seider and Hénel were the first to investigate the effect of this dissipation

on the boundary layer and the present work attemps to extend this knowledge.
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4.2 Overview of Part I1

The present effort is primarily concerned with the development of an algorithm
capable of analyzing laminar flows with boundary-layer separation and heat transfer
induced by both steady and unsteady shock waves. Several algorithms have been
developed that are reasonably accurate in predicting pressure distributions for the
laminar shock-boundary-layer interaction problem. To the author's knowledge no al-
gorithms, other than those developed herein, currently exist that accurately predict
skin friction coefficients in the interaction region or the correct separation and reat-
tachment locations. Similarly, no algorithm is available that accurately computes
local heat flux for even the simplest geometries when shock waves impinge upon the

boundary layer.

To accurately compute the complex flow structure of shock-induced boundary-
layer separation, or compute accurate heat flux levels, the algorithm must provide
for high resolution of the complex wave systems and maintain the proper physical
behavior of the problem under consideration. TVD schemes, which lend themselves
to limited, but extremely rigorous, analysis provide the best foundation to build
upon. Although developed for the solution of scalar hyperbolic conservation laws.
TVD schemes perform well on systems of hyperbolic equations, such as the Riemann
problem analyzed in Part [. The TVD methodology is adapted herein to provide

accurate solutions to the parabolic Navier-Stokes equations.

Part Il begins with the casting of the Navier-Stokes equations in conservative
form, after which the system is linearized. "I'vo versions of TVD algorithms. the Ist-
Order AFIT TVD Navier-Stokes Code (ATNSC1) and the 2nd-Order AFIT TVD
Navier-Stokes Code (ATNSC2). are then developed. Both algorithms aie cxtensions
of the Harten-Yee inviscid algorithm outlined in Section 2.2.3. ATNSCI is formally
first-order accurate in time. second-order accurate in space. ATNSC2 is formally
second-order accurate in time and space. ATNSCI and ATNSC2 are first appliced,

along with a Lax-Wendroff algorithin. to the viscous Burgers’ equation as a test case.
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This test case illustrates the superior performance of the ATNSC schemes, as well as
the necessity of utilizing the fully second-order ATNSC? algorithm fer low Reynolds
number flows. The ATNSC algorithms are then applied to the solution of the shock-
boundary-layer interaction problem. Computed solutions are compared with the
experimental data of Hakkinen et al., and with solutions obtained from Visbal’s
Beam-Warming algorithm [47], in order to illustrate the superior performance of the

TVD based algorithms.

The ATNSC algorithms are next applied to the problem of unsteady shock-
induced heat transfer. Solutions are compared with those obtained from Visbal's
Beam-Warming algorithm, the theoiy of Mirels [30], and the experimental data of
Smith [11]. ATNSC solutions are shown to behave in a physically correct manner,
providing extremely accurate solutions. The Beam-Warming algorithm allows the

formation of nonphysical waves, including expansion shocks, for this test case.

Finally, conclusions arrived at from the current investigation are summarized.

Suggestions are also given for further research involving use of the ATNSC algo-

rithms.
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V. Viscous Analysis
5.1 Navier-Stokes Equations
The conservative form of the Navier-Stokes equations is written as

ou + oF(U) + oG(U) _ oF,(U,U,,U,) + G, (U, U,, U,)
ot Oz oy Oz dy

(5.1)

where U, F, and G are the same as for the Euler equations, Eq 2.1. F, and G, are

the viscous flux terms, given as

0 1 0 1
T. .
F,= = G, = = (5.2)
Ta:y T‘yy
| UTze + UTay — o | | UTey + 0Ty — gy |

Tezy Toys and Tyy are the viscous stresses:

Toz = (20 + Nugz + M,
Tay = 4 (Uy + vz) (5.3)
Ty = (20 + A)vy + Aug

where p and A are the first and second coefficients of viscosity respectively. The first

coeflicient of viscosity is determined using Sutherland’s formula [1};

T3/2
T+C

p=C (5.4)

where C; = 1.458 x 10~ kg/ (m -5 \/I_") and C, = 110.4 K. The second coefficient
of viscosity is given by
A

B=2+- 5.5
. 55)
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where B = 4/3 yields Stoke’s hypothesis, A = —2/3u. Solutions were also arrived
at using B = 2, based on Sherman’s work as reported by White [49]. No difference

was observed in the numerical solutions using B =4/3 or B = 2.

The quantities ¢, and ¢, are components of the heat flux vector, ¢ = —kVT.

The coefficient of thermal conductivity, %, is determined from the Prandtl number,

Pr:
Pr=—= (5.6)

with Pr = 0.72 for air.

The equations may be written in linearized form as
Ui+ AU, + BU, = A1U; + B U, + AUz + BaUyy + (Az + B3) Uy (5.7)

where the viscous Jacobian matrices are

Ay =0F,JoU A, =0F,J0U, A;=0F,/0U,
B] = BGU/OU Bg = 3Gu/8Uy B3 = 8G,,/8Ux
with the individual terms given in Appendix A.

A general spatial transformaticn of the form ¢ = ¢(z,y) and n = n(z, y) is used

to transform Eq 5.7 from the physical domain (z,y) to the computational domain

(&m):

U, + AU& + BU,, = A1U§ + B] U,, + figUEE -+ BQU,,,, -+ (/13 -+ B;;) Uf’) (59)

where
A = LAY £UB
/11 = LA+ B (5.10)
Ay = 84+ £2B2 + €26y (As + Ba)

Az = fznyAS + €y771:BS + e A + EynyBZ




and
B = nA+nB

Bl = 77::A1 + TIyBl (5 11)
By = nA,+ 12 By + 120y (As + Bs)

= é:r:nyBIi + §y77:A3 + &z Az + fynyB2

&
|

5.2 Numerical Procedure

5.2.1 1st-Order Time, 2nd-Order Space Algorithm. A first-order time, second-
order space, upwind TVD scheme is now presented for the Navier-Stokes equations.
Based upon the excellent results achieved in the inviscid case, a chain-rule formula-
tion is utilized. The scheme for the Euler equations , described in Section 2.2.3, is
second-order accurate in space and time. Taylor series expansion shows the scheme

is a representation of

Up+ & Fe + 0. Fy + §,Ge +1,Gyy = %3 [—Uu + z‘ingg + (AB + B/i) Uep
+B2U,| + O [A82, A8%, Ap?)

(5.12)
and is second-order accurate for the Euler equations, since
Uy = A%Ug + (AB + BA) U, + B*U,, (5.13)

Viscous terms are added to the Euler scheme, Eqs 2.61 and 2.62, using second-

order accurate, central-difference approximations:

. Al n n
£eUR = Ui = Ul = 25 (Frops—Fry) — ALl (5.14)
hrr= = A L Fim -
EnUin = Ui — &7 (Giany = Gipy) + AT, (5.15)
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where F and G are given by Eqs 2.63 and 2.64. The viscous terms, ¥ and ¥,, are

1

‘I’E = 2_&' [(fx)j,k (FUj+1,k - R.;_,-_x,k) + (éy)j,k (Gu_,_l_,.k - ij_l,k)] (5_16)
and
\IJn = i]' [(nx)j,k (Fv,,k-l-x - Fu_,_k_l) + (ny)j,k (ij'k“ - Guj‘k_l)] (5'17)

The scheme given by Eqs 5.14 through 5.17 is a representation of

Ui+ & Fe + 0By + §,Ge +0yGy = €zF"£ + an”n + fvac + nvan
+4¢ [~ Uy + AU + (AB + BA) U,
" 4B, + O[A%, A2, An?]
(5.18)

Examination of Eq 5.9 reveals

Ue = (B*+B}-BB - BB) U,
+ (AuBy 4 Budy — AyB~ BAy— AB,— BA+ AB+ BA) Uy,
+ (B1B2 + BoBy — BBy — BoB) Uy + B3Upyny
+ (B3-§1 + 3133 - Bsé — BBy + B A; + /1331
~BAs— A3B + By, + A1 By — B,A - AB,) Uy
+ (B2Bs + ByBy + By As + AsB,) Uggny
4 (B2 4+ A2+ Aabs + Bod + Ao + Bods) U
+ (Asi + A1As ~ AgA — Ads + AiBs + By Ay
—ABs - ByA+ AyBy + BiAy - AB — Biy) U,
+ (/‘izl‘ia + AzAs + /1233 + Bafiz) Uegen
+ (/12 + A2 - A4 - fi,/l) Uee
+ (fllflg + Ardy ~ AA, - /izfl) Ugee + A2Uegee (5.19)
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Since the term of O[At] in the truncation error of Eq 5.18 does not vanish upon
substitution of Eq 5.19, the scheme obtained by adding central-difference represen-
tations of the viscous terms to the Euler scheme, Eqs 5.14 through 5.17, is first-order

accurate in time and second-order accurate in space. This new scheme represents

U, + fog + 7]3,-F 4+ fyGe + 77y = €sz5 + nsz,, + évae + nJGUn

(5.20)
+0 [At, Ag?, An?]

This first-order time, second-order space scheme is hereafter referred to as ATNSC1
which is shorthand for 1st-Order AFIT TVD Navier-Stokes Code. A description
of the ATNSC1 routines is contained in Appendix C. Also included is a relative
performance evaluation of the routines, obtained using the CRAY FLOWTRACE

option.

5.2.2 2nd-Order Time, 2nd-Order Space Algorithm. All known TVD solu-
tions to the Navier-Stokes equations, prior to the present effort, have implemented
the viscous terms in a manner analogous to that of Section 5.2.1. A second-order
accurate, upwind TVD scheme is now developed for the Navier-Stokes equations. As
previously mentioned, the scheme for the Euler equations is second-order accurate
in space and time and is a representation of Eq 5.12. Utilizing the fractional step

method, consider a scheme of the following form for solution of the Navier-Stokes

equations:
Ure = cheictchuz, (5.21)
where
At
h . n o

(S 1]
o
(3%
p

A2 .
= (1 ~ AtAS + —2—A26§) e+ ALTE (5.




and

* At n = *
‘Cn ik = UJ.k ATI (GJ,k+2 GJL ')+Atq’
= ( — AtBS, + A—tBW) e+ ALY (5.23)

where h = At. The numerical viscous flux derivative, ¥, is the representation of the
viscous derivatives terms plus terms necessary to cancel any first-order truncation
error. Above, 8f represents a second-order accurate (centered) difference approxi-
mation of the k* derivative with respect to l. The functions F; Lk and GJ k) are

the same numerical fluxes as for the Euler equations, Eqs 2.63 and 2.64.

E?U provides a second-order accurate solution to the one-dimensional equation

At
Uet AU = ¢ — 5-Uu + —A?U£€ +0[ar, A¢] (5.24)

while L2U provides a second-order accurate solution to

At At
Uit BU, =ty = - Use + =By + 0 (a2, An7] (5.25)

In the two equations above, 1 is the exact representation of the viscous flux deriva-

tives plus terms necessary to cancel any first-order truncation error.

Subtracting selected viscous terms from the two equations above gives quasi-

one-dimensjonal forms of the Navier-Stokes equations on the left-hand sides:

Ug + AUE - A[U& - AgUgg - /13[]{,, = ’ll)g - %"Utt + %Az[j&
—filUg - AQU{E - /‘i;;UE,,

U+ BU, = BlU, = BoUpy = BalUey =y ~ B0 + 4L B2,
~ByU, = ByUpy = BaUg,
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The objective is to select 1 such that the right-hand sides of Eqs 5.26 and 5.27

equal zero, yielding the quasi-one-dimensional Navier-Stokes equations:
Uy + AUs — AyUe — AgUge — AUy = 0 (5.28)
U, + BU, — ByU, — ByU,, — B3U¢ep, =0 (5.29)
Examining the quasi-one-dimensional Navier-Stokes equation in the é-direction gives

Uy = (AZ—AAl AA+A ) Uee
+ (ArAs + Apdy — Ady — ArA) Ugge + AlUeere
+ (ArAs + AgAy — Ads = AgA) Ugg,
+ (flzfia + fisfiz) Ugeen + A3Ueenn - (5.30)

Substitution of Uy, into Eq 5.26, and setting the left- hand side equal to zero, yields

OF, LAt At
73
(AlAz + /3.2/‘11 - /1/12 - .‘ig/i) Uggg -+ figU&fg

1_1)5 = [(A2 /i/h Al )Uff

+ (/’ilfia + /‘13/11 b A:‘i:} — /i;;/‘i) UEEYI
-+ (/12143 + /‘isfig) UEE&I +A§U55m)] (531)

Similar manipulation of the 7-direction equation gives

61




Applying the fractional step operators, as in Eq 5.21, with the numerical vis-

cous flux derivatives given by

Ue = P+ 5 (42— Ad - 4id) 8
+ (Arda + Aody = Ady - A4 63 + A6!
+ (Ards + Aody - Ads - AsA) 8,
+ (Azds + Ashy) 6le, +A26%,,| U (5.33)

and

At (fny 2a  a s
Uy = 6,6+ (B2 - BB, - B,B) 82
+ (Bléz + BZB] - BBz - BQB) 63 + 3363
+(BuBs+ Buby - BBy~ ByB) 3,

~

+(BeBs + BabBs) 64, + 5284, U (5.34)
results in

U = chckchoiur,
= {1+280{ (B - B) 6, + [(B*+ 57 - BB, - B,B) At + By) 82

+ B+ As + (AvBy + BiAy — 1B — BA, — AB, - ByA+ AB + BA) Al &,

+(BiB> + BoBy — BB, — B, B) Ats? + B2Ats?

+(BsBy + BBy — BB — BBy + BiAs + AsBy

~BAy— AaB+ B Ay + AiBy - Bod - ABy) A},

+ (3233 + BBy + ByAs + /iséz) Até;‘,,,,,,
+ (B3 + A3+ AaBo + BrAn+ AsBs + Bys) Atsl,,
+ (Ashy + A1As — Ay — Adg + 4By + B3A,

—/’iB;g - B_’;/‘i + /‘i'_)Bl + Bl Iiz - fizB - B/iz) Até?e,,




+ ( oAz + AzAy + Ay By + BsAz) AtSgge,

+ (A1 = A) 8+ [(A2+ A2 - AAy - AiA) At + Ay 82
+ (ArAs + Aoy - A4, — A A) aes + Alest} U,
+0 (A8, 0€%, An?)

The above scheme is a second-order accurate representation of

U + AUg + BU, — A\Ug — ByU, — AyUge — BoU,y — (A3 + Bs) Ugy
= At|-Uy+ (B*+ B} - BBy - B,B) U,
(AiBy + BiAy - A\B - BA, — ABy - BiA+ AB + BA) Uy,
(BB + BoBy — BBy — By B) Uy + BUpy
( 3By + BBy — B3B — BBs + By As + A3By
~BAs— A3B + ByAy + Ai1By — BoA — ABy) Ugyy

+
+
+

(BzBa + B3By + ByAs + AsBz) Uennn
+ (Bs + A3 + AsBy + ByAs + AsBs + B:;A3> Usenn
(/1 AL+ A1As — AgA — Adz + A By + B3 A,
AB B;»,A + AgB1 + B -‘12 ~ A2B — Efiz) Ueen
+ (AoAs + Ashs + AxBs + By Ay) Ugeen
+ (A% + A} - AAy — AA) U
+(Aid

A+ Az.‘h - AAQ - .‘12.‘1) Ug{g -+ fi%U{ggE] (536)

Examination of Iq 5.9 reveals

Uu = (‘2+B?_BBI —BIB) Unn
-+ (/‘i]Bl + Bu‘il - /‘ilB - B/‘i; - f‘iBl - B;A + .‘i[? + B“i) Ufn

A

+ (Bléz + B2Bl - BI}Z - B2B) Upnn + BgUnmm
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Bl + BlB3 - BSB BB3 + BlA;; + A3Bl
A3 — AsB + By + A1By — ByA — AB,) Uy

+(5

B

( Bs + Bs éz + Bzfis + fiséz) Uenin

( § -+ fi?’; + ;1232 + 32;12 + fisf?s + Bsfis) Usenn

(AsAy + AvAs — AsA — Ads + ABs + B3,

~ABs - ByA + AyBy + BiAs — AaB — BAy) Ug,

+ (AzAs + AgAy + ArBs + BsAz) Ueeen

4 (474 &= A - AA) U

+ (Ardz + Aody — Ady — AoA) Ugee + AUigee (5.37)

Upon substitution of Eq 5.37 into Eq 5.36, the right-hand side of Eq 5.36 be-
comes O [At2, A£?,An?] and a second-order accurate algorithm is assured. Thus,

the scheme given by Eqs 5.21-5.23, 5.33, and 5.34 is a representation of

Ut + fx[’ﬁ + an + éyGE + 77y = é:r: + anu,, 4+ fvaé + nyGu',

(5.38)
+0 [At?, AL%, An?)

This scheme is hereafter referred to as ATNSC2, which is shorthand for 2nd-Order
AFIT TVD Navier-Stokes Code. A description of the ATNSC2 routines is contained

in Appendix C. Also included is a relative performance evaluation of the routines,

obtained using the CRAY FLOWTRACE option.

5.2.83 Beam-Warming Algorithm. The implicit Beam-Warming algorithm as
implemented by Visbal [47] is used herein as a comparison against the solutions
provided by ATNSC. The scheme solves the strong conservation form of the Navier-
Stokes equations. The scheme is written in delta form as

{1+ g 5 -5 Hi+ 2 (8 - 5 Yo =

. (5-39)
SR R) 5 (-G e (gam s o)

64




where

ARl = ™ — g (5.40)
and
F, = (fa:Fu + fyGu) /J Gy = (77ro + 77va) /'] (5 41)
A, = 8F,90; B, = 8G,/a0,
F,, and G,, are evaluated from
FV(U1 Ue,Uy) = f?vl (U=U5)+Pw (U, Uy) (5.42)
G, (U, Ue, Uy) = G, (U, Ug) + G, (U, Uy)

For steady-state calculations, first-order accurate Euler-implicit time differencing is
utilized by setting 0; = 1 and 0, = 0 . Second-order time accuracy is achieved by
setting §; = 1/2 and 02 = 0 to obtain a trapezoidal time differencing. Trapezoidal
differencing is used for all computations where the a time-dependent solution is of

interest. Eq 5.39 is implemented using second-order approximations for the spatial

derivatives.

To maintain numerical stability and provide smooth solutions, explicit fourth-

order damping is added to the right-hand side of Eq 5.39 as

and
~ IALIT U (5.44)

Implicit second-order damping is inserted with respect to the implicit operators as

— Wi AL R 51 (5.45)
and
— WAL 80,1 (5.46)
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In Eqs 5.43 through 5.46, &f is a second-order accurate, central-difference operator
used to approximate the k™ derivative with respect to /. The nominal values of the

damping coefficients are [27)

wﬁ =0.02 w!=0.04

(5.47)
w! =025 wf =025
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VI Viscous Results and Conclusions

6.1 Burgers’ Equation

To provide a performance comparison, the Lax-Wendroff and ATNSC schemes

are applied to the linearized version of the viscous Burgers’ equation
U+ CUy = [LUypy

with periodic boundary conditions

and the initial condi‘tion

u(z,0) = csin(kz)

Eq 6.1 has the time-dependent solution
Ula,t) = ce™* sinfk(x ~ ct))]

The ecuations can he non-dimensionalized using
{ 3

r = kx
v = ufc
I = tlke

to obtain
wty, = (1/Re)u,,

w(z,0) = sing

Ulz,t) = e U/RN.gy (g —1¢)
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(6.6)




where

Re = ¢/(pnk) (6.7)

Rather than perform a stability analysis for the ATNSC scheme with the viscous
term added, the exact stability condition for the Lax-Wendroff method is used [1].

In non-dimensional form this limitation becomes

AL < —(1/Re) + \/[(I/Re)'z + CFL(22Y] (6.8)

Figures 6.1 and 6.2 show the results obtained using first-order time accurate,
W3 = (1/Re)u,, , versions of the Lax-Wendroff and ATNSC schemes. This is similar
to the method used in the implicit application of TV algorithms to viscous equa-
tions and is utilized herein to demonstrate the necessity for second-order accuracy

at low Reynolds numbers.

Solutions are initially computed under a CFL restriction of 0.80 with Re =
10000 using 49 (Case I), 99 (Case II), and 199 (Case III) cells respectively. The
solution was carried out to { = 56.665 . Figure 6.3 shows the same schemes under
a CFL restriction of 0.95 and Re = 10000 using 49 cells only. The norm given with

each plot is defined as

1/2
lu—Ujl = (A£Z lu ~ Li|2> (6.9)

H
U is the exact solution of Eq 6.6 shown as the solid curve in the figures.

Figure 6.1 shows that the Lax-Wendroll scheme exhibits a phase shift for Case 1.
which diminishes as the number of cells is increased. Given the smooth initial data of
Eq 6.6, the overall performance of the Lax-\Vendroff scheme is 1ather good. However.

the phase shift associated with the Lax-Wendroff scheme does not. appear with the

ATNSC schemes.

IMigure 6.2 shows the results obtained using the first-order ATNSC' scheme. The
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majority of the error is concentrated in the areas of rapidly changing gradients. Note,
however, that the ATNSC norms are smaller in every case than the Lax-Wendroff

norms.

Figure 6.3 shows the effect of increasing the CI'L restriction to 0.95 for the
two schemes. The increase in the CFL (or Courant) number tends to lessen the
phase shift associated with the Lax-Wendroff scheme, while allowing the computed
solutions of ATNSC to more closely match the exact solution in the regions of rapidly

changing gradients.

Figure 6.4 displays the results of a second-order version of the ATNSC scheme
applied to Eq 6.6 at Re = 10000. Sccond-order accuracy is arrived at through the
use of

Af 1

‘II: = (I/Re)‘_’ﬂz_‘q - El’a_&_z_ + h’?ﬂ&& (610)

whiclr is consistent with Eq 5.31. A C'FL restriction of 1 was used with no observed
difficulty and the norms were between onc and two orders of magnitude lower than

either of the first-order schemes.

Results of a more severe test of the first-order version of ATNSC are shown in
Figure 6.5. The first-order algorithm was applied tu the viscous Burgers™ equation
with Re = 100 and ¢ = 25. The lower Reynolds number represents an increase in
- . : ]
significance ol viscous forces over the previous case. The figure clearly shows the
degradation of the solution near the extrema. as well as small oscillations present in
the solution. The CFL number had to be reduced as spacing was reduced in order
to maintain stability. In fact. the C'FL numbers used were apparently on the edge

of the stability limit.

Solutions using the second-order accurate version of ATNSC for Re = 40 are
shown in Figure 6.6. The solution is crisp near the peaks and is free of oscillations.
The norms are an order-of-magnitude lower than those of the first-order scheme.

Finally, the second-order scheme was utilized with a C'FFL, number of 1 for each cell

69




size. The results, shown in Figure 6.7, are indistinguishable from those of Figure 6.6

except that the increase in CFL number further decreased the norms.

Overall, all the first-order schemes perform rather well for the viscous Burgers’
equation with periodic boundary conditions, smooth initial data, and high Reynolds
number. However, the Lax-Wendroff solution can be expected to show the same type
of oscillations as for Riemann’s problem if smooth initial data is not specified. It
should also be noted that the first-order TVD scheme performs best when the CFL

restriction is as close to | as possible.

The situation is not so favorable for the first-order TVD scheme at lower
Reynolds number. The first-order scheme exhibits decreased accuracy and severe
stability restrictions. Thus the first-order scheme is wholly unsuited to the calcula-

tion of unsteady flows at low Reynolds numbers.

The behavior of the second-order TVD scheme is very encouraging. Accuracy
is superb and the schemeis very robust where stability is concerned. CIFL numbers as
high as 1.1, in relation to Eq 6.8, were tested with no instability. The Lax-Wendroff
time step limitation given by fq 6.8 is obviously somewhat over restrictive in this

case.
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6.2 Boundary Conditions for Viscous Flow

Boundary conditions for viscous flows are, in general, more straight forward
than their inviscid counterparts described in Section 3.2. At the wall, the inviscid

surface tangency condition, Eqs 3.11 and 3.10, is replace by the viscous no-slip

requirement:
u=0
(6.11)
v=10
Simplified wall temperature contitions representing either an adiabatic wall
Te, =0 (6.12)
or constant temperature wall
Te=C (6.13)

arc used in the current study, depending on the flow of interest. With the wall
mapped to a constant 7 coordinate, the pressure at the wall is obtained by solving

the normal-momentum equation:

p,,\/l]};—-%l)g = (&t &) e + (";: + "’Jz) P
= (v + nyry) {00 (&0 A+ 2A,)

1y [6 (2 + N + 0y (204 A), ]} (6.14)
+ (€yue + nytn) {0 (Eyme + nyitn) + 1y (Expte + 1201) } |

2 e ¥ 2
Fny (f‘;u& + 2yt + :]yu,,,,)

2+ My (Evee + 2m,700 + 10

Flow at the inlet and exit of the computational domain is assumed to be
inviscid. Inflow and outflow relations from Section 3.2 are thus used to determine
flow quantities at these houndaries. \s stated in Section 3.2, for supersonic ontflow
all quantities must be extrapolated from the interior of the domain. In pract ce.

this extrapolation is also performed in the subsonic boundary-laver embedded in the
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supersonic outflow. For the cases to be considered herein, no adverse effects of this

extrapolation are noted.

6.3 Shock-Boundary Layer Interaction

An indepth experiment in laminar shock-boundary-layer interaction was car-
vied out by Hakkinen et al. [18] in 1959 at the Massachusetts Institute of Technolegy
under the sponsorship of the National Advisory Committee for Aeronautics. De-
tailed measurements were made of pressure distribution, skin friction coefficient,
and velocity profiles for a number of combinations of overall pressure ratio, ps/pac.
and shock Reynolds number, Re.,, at a freestream Mach number of 2.0 for a shock
wave impinging upon a flat plate boundary-laver. The most recognizable of these
in the CFD community is the case of Figure 6b of reference [18]. The overall pres-
sure ratio for this case is 1.40 at a shock Reynolds number of 2.96 x 10°, based on
xs = 4.978 em. It was pointed out by Degrez. Boccadoro, and Wendt [11] that this
has been used as a test case by numerous researchers (Skoglund and Gray in 1969;
MacCormack in 1971 and 1982; Hanin, Wolfshtein. and Landau in 1974; Beam and
Warming in 1978; and Dawes {10] in 1983). Liou also used this as a test case as

recently as 1989 [26].

The experimental pressure and skin friction profiles for this case are shown in
Fiqure 6.8. and a sketch of the wave structure is shown in Figure 6.9. The friction

coefficient. Cy, is defined as

;== (6.15)

where 7, is the normal component of shear stress at. the wall

T = ¥, (6.16)
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and ¢e is the dynamic pressure

1
Joo = 'éﬂcovc?o (6.17)

‘With the-tangential velocity given by Eq 3.11, and the wall mapped to a7 = constant

coordinate, 7, can be written as

Tw = 1 (Myty — 1z0,) (6.18)

No negative values of skin friction are shown because the total-head tube was not
able to reliably indicate negative shear values. Locations where the experimental
skin friction may have been negative are shown by downward pointing arrows in
Figure 6:8. While the-accuracy with which the pressure profile can be calculated has
greatly improved since MacCormack’s calculations [28], there has been essentially no
progress in matching the skin friction profile. This includes the overall shape of the
profile as well as the location of the separation and reattachment points. MacCor-
mack’s calculations failed to show the characteristic plateau in the pressuie piofile,
and, while obtaining a fair prediction of the separation point, he predicted reat-
tachment ahead of the experimental data. In addition, the friction coefficient alter
reattachment is approximately 20% lower than that suggested by the experimental
data. Liou [26] obtained a fair matching to the pressure profile but failed at pre-
dicting the skin friction profile in the regions of adverse pressuie gradient. In ever)
case known to the author, even those that somehow managed to accurately predict
separation and reattachment points, the ultimate skin friction level after reattach-
ment remains 18% — 20% low. Liou goes so far as to staie that this discrepancy in
the skin friction level may be due to transition of the boundary-layer from laminar
to turbulent immediately in the interactio: region [26]. This is in direct contrast to
the experimental velocity profiles of reference [1S] and contrary to the observations

of the experimenters [18].
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Figure 6.10. Grid Used in Shock-Boundary Layer Interaction Investigations

The grid used for the numerical investigations is shown in Figure 6.10, with
133 points in the axial direction and 60 points in the normal direction. Spacing is
held constant in the axial direction at Az/xspeer = 0.013 and ranges in the normal
direction from an initial:value at the wall of Ay/a 00 = 6.78 X 10~ to a final value
of Ay/sheet = 1.12 x 1072 at the upper edge. Grid densities are chosen comparable
to those used by MacCormack 28], Dawes [10], and Liou [26] to provide a comparison

based on similar grids.

6.3.1 ATNSC Solutions. The computational domain is initialized at the uni-
form freesiream conditions to the left of the point along the upper boundary at
which the shock is generated. Post-shock conditions are applied downstream of this
point. An adiabatic wall condition is used to obtain the wall temperature along the
plate and the nomal momentum equation is solved to obtain the wall pressure in

combination with the no-slip velocity constraint at the wall.

Figures 6.11-6.22 show the results of applying the ATNSC algorithms to this

test case. The data represented by the figures can be taken to be the solution pro-

<0
(3]




vided by either ATNSC1 or ATNSC2, since at this Reynolds number both algorithms

provided exactly the same results.

Figures 6.11 and 6.12 depict the solution obtained with ¢ = 0 in the nonlinear
fields and ¢ = 0.05 in the linearly degenerate fields. Note that this is in contrast

to the values of ¢ = O[0.1] for the nonlinear fields and ¢ = 0 for the linearly de-

-generate fields typically utilized for the inviscid calculations of Part 1. Values of ¢

up to 0.025 for the nonlinear fields were found to have no noticeable effect on the

solution while the ¢ value used in the linearly degenerate fields significantly alter

‘the solution, as will shortly become apparent. The pressure profile of Figure 6.11

clearly shows the pressure rise Lo sepairation, the constant pressure plateau within
the separated region, and the pressure rise to 1eattachment as described in refer-
ence [18]. The most noticeable aspect ol the pressure profile is the slightly lower
value, as compared to the experimental data, within the separation region. The
reason for this is unknown, although the trend was consistent throughout the invesi-
gation. The skin friction profile of Figure 6.11 contains several regions of interest.
Tirst, there is a very slight oscillation in the friction coefficient leading up to the
sharp drop just prior to separation. This was observed for values of €2,y > 0.025,
and in fact, skin friction was severly oscillatory at ¢4 = 0[0.1] which are not un-
usual values when €4 # 0 for inviscid calculations. The length of the separation
vegion was underpredicted in that delayed separation and premature 1cattachinent
were observed. This again appears to be an artifact ol the values of ¢4 used. as
will become apparent upon examination of subsequent figures. The skin [riction
profile beyond reattachment shows a rapid 1ise to the ultimate value, although the
ultimate value shows much better agreement with the experimental data than that
obtained through previous investigations known to the author. Figure 6.12 provides
a visualization of the wave structure through 50 equally spaced pressure contours
between the upstrecam and downstream pressuies. The ATNSC algorithm provides

high-resolution capturing of all the pertinent flow structures. These include the gen-




erated shock, the leading-edge shock and accompanying expasion, separation shock,

expansion fan, and reattachment shock.

The values of €4 were lowered to 0.025 for the solution depicted in Fig-
ures 6.13 and 6.14. The pressure profile of Figure 6.13 is identical to that of Fig-
ure-6.11 except for the extension of the constant pressure plateau slightly upstrcam
and. downstream. This is due to the inciease in the length of the separation region
apparent upon comparison of Figures 6.11 and 6.13. Calculated separation and reat-
tachment points agree extremely well with the experimental data. Note also that
there is-no longer any oscillation in the friction coefficient in the upstream region and
that the rise to the ultimate downstieam friction value is more gradual. This is the
first numerical solution known to the authot that correctly predicts the separation
and reattachment points as well as the correct downstream friction coefficient. Com-
puted pressure contours for this particular case are presented in Figure 6.14. Wave
struciu;'e is very similar to that of Figure 6.12 except for the enhanced structure in
the interaction region, due to the lengthening of the separation region. A leugthed
separation region also provides enhanced resolution of the expansion fan in that it

is not so tightly packed between the shocks.

Values of ¢ necessary to produce an acceptable solution are, as alluded to
previously. an order of magnitude smaller than the values that are often used for
inviscid flow. Since the vast majority of viscous TVD research has been conducted
for hypersonic flows, an answer was sought in the appropriate literature. Exami-
nation of relerences [24),[32], and [34] revealed that values of 0.05 < ¢ < 0.25 were
commonly used for hypersonic flows in the range 4 < M, < 25 with ¢ as high as
0.5 in some instances. [fowever. it was discovered that these reseaichers were using
variable isotrepic damping attributed to Yee [15] and anisotropic damping due to
Martinelli [29]. Tn the normal direction, isotropic damping is applied to the nonlinear

fields as

¢ = e [[u- Vel + - Vol + S (ke + k,,)] (6.19)

M
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and-in the axial direction, anisotropic damping is applied to all fields as

A0

2/3
¢ = AN |1 + (—) (6.20)

A&

where MF) = |u- Vk| + ¢[VE].

These changes were incorporated into a version of the ATNSC code and a
solution calculated again using ¢ = 0.0 in the nonlinear fields and € = 0.05 in the
linearly degenerate fields. This particular solution is depicted in Figures 6.15 and
6.16. Figure 6.15 shows that this solution is identical to that of Figure 6.11 except
for a-small -hange in the skin friction profile near the minimum value. Examination
of Figure 6.16 reveals a sharper resolution of the wave structure than Figure 6.12,

more in line with the structure of Figure 6.14.

Lowering the value of ¢ in the linearly degenerate fields to 0.025 resulted in the
solution of Figures 6.17 and 6.1S. At this lower value of ¢, the profiles and contours

of Figures 6.17 and 6.1S appear identical to those of the constant damping case,

[ligures 6.13 and 6.14.

Based on this set of solutions, it appcars that the change in skin friction pro-
files and wave structure with ¢ is not 2 strong functicn of variable versus constant
damping. Research was then conducted into whether anyone had observed the same
phenomenon in a similar flow regime. Seider and Hanel {39} have recently observed
similar phenomenon in regards to transonic airfoil drag prediction. They simulated
the transonic flow about a RAE 2822 airfoil (M, = 0.73.a = 2.79°) using several
TVD schemes applied to the thin layer Navier-Stokes equations. including a scheme
based on Roe’s approximate Riemann solver. They found that the Roe based scheme
provided the best overall results, but that a certain sensitivity to the values of ¢ for
the linearly degenerate ficlds existed for all their schemes. They used values of ¢ = 0.
0.1, and 0.2 and found that ¢ = 0.2 resulted in a 4% decrease in drag, while lcaving

lift unchanged. This is consistent with the changes in skin friction while pressure
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remains-constant_as seen herein. They then examined a flat plate at M, = 0.5 and
Re; = 5000 and found: that skin friction in this case increased with increasing .
TFinally,-they doubled the number of grid-points in the boundary-layer, from 7 to 14,
and found that this totally removed the ¢ dependence. It appears that this behavior
is common to flows in the transonic and low supersonic regimes and the effect of ¢

must be analyzed whenever a solution is computed at these Mach numbers.

Three final solutions using ATNSC are presented showing the above mentioned
‘behavior. First, the variable damping algorithm is used to arrive at the solution of
Figures 6.19 and 6.20 using ¢ = 0.025 for all ficlds. This solution is identical to that of
Figﬁr’esﬁ.lf_’; and 6.14, thus supporting the assertion that the value of ¢ in the linearly
-degenerate fields is the primary influence. Halving ¢ led to the computed solution
shown in Figures 6.21 and 6.22. Again, the pressure profile remains essentially the
-same as all other cases, but the skin fiiction levels have decreased slightly, resulting
in premature separation and delayed reattachment. Finally, the number of grid
points in the boundary-layer was doubled, from 10 to 20. Solutions are presented in
Figure 6.23 for ¢ values of 0.0125. 0.025, and 0.035 using this new grid. The pressure
profile remains unchanged except for a decrease in the length of the pressuie plateau.
Skin friction changes only slightly upstieam of the interaction region, but drops to
zero more rapidly than is the case in Figure 6.13. Separation and reattachiment points
are correctly predicted, and the rise to the final skin friction level more closely follows
the experimental data than that of the previous solutions. The ¢ dependence has
been removed, within the range 0.0123 <« < 0.033, consistent with the observartions

of Seider and Hanel [39].
f

6.3.2 Beam-Warming Solulions. The approximate-factorization algorithm of
Beam and Warming, Eq 5.39 as implemented by Visbal [47], is applied to this test
case as a comparison against the ATNSC algorithm. Figures 6.24 and 6.25 depict the
Beam- Warming solutions using the nominal recommended value of the second and

fourth-order damping coefficients [27]. A value of 0.25 is used for the second-oider
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coefficients in both the axial and normal directions while a value of 0.02 is used for
the fourth-order coefficient in the axial direction and 0.04 for the normal direction.
The pressure profile of Figure 6.21 is very similar to the ATNSC profiles except for
a slightly shortened length of the pressure plateau in the separation region. The
skin friction profile is similar to the profiles appearing in the literature for various
algorithms applied to this problem. Beam-Warming predicts early separation while
the reattachment point is in good agreement with the experimental data. Most
noticeable is the under-prediction of the skin [riction level beyond icattachiment.
approximately 15% below the experimental value. Figure 6.25 depicts a significant
decrease in resolution of the wave structure as compared to the ATNSC solutions.
Shock waves, compression waves. and expansion waves are all smeared to a much

greater extent than those obtained with TVD.

Figures 6.26 and 6.27 show the solution computed when the damping coeffi-

cients were double those of the previous solution. The pressure profile shows a fuithet
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reduction in the length of the plateau within the separation region. Predicted sepa-
ration and reattachment points are in good agreement with the experimental data,
while the ultimate friction level is still below that of experiment. There is no oscil-
lation of the skin friction profile in this highly damped case. The pressure contours
of Iigure 6.27 are more highly smeared than those of Figure 6.25, but the increased
damping results in a reduction of the oscillatory effects upstream and downstream

of the shocks, compressions, and expansions.

Finally, Figures 6.28 and 6.29 depict a solution using half the damping values
of Figures 6.24 and 6.25. The profiles of IMigure 6.28 show that the pressure plateau
in the separation region has lengthened over that of [igure 6.26, more in line with
Figure 6.24, but stiil is less in extent thatl that of the ATNSC solutions. Again,
-early separation is evident but reattachment is in line with the experimental data.
Oscillations in the friction profile downstream of reattachment have reappeared, and
the ultimate skin friction remains approximately 15% below the experimental value.
Wave structure, Figure 6.29, is much less smeared than in Figure 6.27, but shows

the same oscillatory effects as Figure 6.25.

The solutions obained using the ATNSC TVD algorithm clearly demonstrate
that it is possible to obtain very accurate estimations of separation and reattachment
points while at the same time maintaining high degrees of resolution of the wave
structure. The Beain-Warming solutions are consistent with those in the literatwie
for numerous algorithms. Only the TVD based ATNSC algorithm incorporates the

necessary physical constraints to achieve high accuracy and resolution.

ATNSC solutions are obtained using a constant CFL number of 0.95, under the
time step restriction of Eq 1.28. The solution is monitored until no change is observed
in the skin friction profile, typically requiring 4000 time steps to achieve steads-
state convergence. The data processing rate for ATNSC1 with constant damping is
1.6071 x 1073 seconds per grid point per time level for the CRAY X-MP/216. Data

processing rates for the other ATNSC versions are contained in Appendix €. Beam-
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Warming solutions are obtained using a CFL number of 5.0, again monitoring until no
change is observed in the skin friction profile. This typically requires 1000 iterations
for Beam-Warming to achieve steady-state convergence. The Beam-Warming date
processing rate is 1.9316 x 10~° seconds per grid point per iteration for the CRAY

X-MP/216.

6.4 Unsteady Shock-Induced Heat Transfer

6.4.1 Heat Transfer Theory of Mirels. The numerical solutions to the un-
steady, shock-induced heat transfer problem are compared hercin against the theony
of Mirels (30, 31] as implemented by Schlichting [37]. The heat flux at the wall can

be written as

g=hy (Low = Tw) (6.21)

where the adiabatic wall temperature, Ty, is given by

, vl
T. =T, (1 . ,.;T)_.,lw,;) (6.22)

<

and the local convective heat transfer cocfficient, h, is defined as

Nu ke
hy = o (6.23)

Ul

For the laminar flow of a perfect gas with weak shorks, Mirels provides the following

approximation for the recovery factor. r
r= P (6.21)

where
0.02
=0.39 - - ———0r 6.25
a=0.3 T (6.25)




and U is the shock propagation speed. The local Nusselt number for an unsteady

fluw is defined as

Nug = 0.5C; Re Pr* (6.26)

where Cy is the local skin friction coefficient

¢y = o (1 03065, (6.27)
_— e——— — Y ) : i ).:-7
/ V Re ‘,js
Re is the Revnolds number
> /)"‘_[_1"3:-[ o
Re = —= (6.28)
e

and the subscript w refers to propertier evaluated at the wall temperature. Time in
Eqs 6.23 and 6.28 is referenced to the time of shock passage. Finally, the exponent

of the Frandtl number in Eq 6.26 is

A =035+ l—_-OL—li/—(— (6.29)

The above relations are used to calculc « the theoretical heat flux at the plate wall.

6.4.2 Numerical Heat Transfer Solutions. The final test case for the ATNSC
algorithm is the prediction of unsteady, iaminar heat transfe: due to a shock wave
moving down a flat plate. The origin of this test case is the work of Smith [11] who
userd a shock tube to study the heat tiansfer to a sharp-edged flat plate, creaiing
ratios of gas temperature to surface temperature tapical of those in gas turbine

engines. A schematic of Smith’s experimental appartus is shown in Figure 6.30.

The case under consideration here is tepresentative of data set A of Smith [41].
The governing paramelters are the shoch Mach number (), pressure in the diiven
section (P), and temperature in the driven sechon (7). The wall temperat.ire
on the flat plate is held constant in the calculations at Ty, Using M; = 1.095,

P, = 49102.800 N/m?. and T} = 297.128 K results in a shock pressure ratio of 1.232.
I
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Figure 6.30. Flat Plate Mounted in Shock Tube

a teniperature ratio of 1.062, a steady velocity behind the shock of 52.368 m/s, a
steady Mach number behind the shock of 0.147, and a steady Reynolds number Le-
hind the shock of 92482. Shock Mach number, driven section pressure, and driven
section temperature are consistent with data set A of reference [41]. Experimen-
tal measurements of the shock Mach number are only accurale within +2%.and
can significantly effect the level of agreement [41] between theory, experiment, and
numerical solution. Thus, the numerical solvtions and theoretical values used Lii
nominal shock Mach number of 1.095 for comparison. A solution for M, = 1.117.

2% above nominal, is presented as a final comparison.

Initial condi*ioas for the computations consist of placing the shock just ahead of
the plate at time z.10 by establishing pre-shock and post-shock conditions on either
side ol the point seled tad. The shock is then allowed to move [reely as time progresses.
With the temperature held at 1} the normai w.maeatam equation is solved to obtain
the pressure at the wall, in commbination with the no-slip constiaiut at the wall. The
numerical solution is sampled ai a point 3.080 % 10™%m downsticam ol the leading
edge to obtain the heat flux at this point. This point was chosen consistent with
the first sampling point of Smith in the shock tube experiment. The computations
ere watvied oul to a time of approximately one millisecond. the approximate time

of transition Lo turbulent flow as noted by Smith [11]. Two different grids are used
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Figure 6.31. Initial Grid for Heat Flux Solutions

in this study, the first of which is shown in Figure 6.31. This grid consists of 201
points in the axial direction and 31 points in the normal direction. The grid spacing
is held constant in the axial direction at Az = 2.510 x i0™*m and is stretched in
the normal direction from an initial value o/ Ny, = ? 355 x 10™°m to a final value of
Ay; =5.594 x 1072m. Grid densities are ba.cd upon assuming a Blasius flat-plate

boundary-layer thickness at the sampling location [49]:

S~

e (6.30)

where v is the distance to the sampling location and R¢, is the Reynolds number
based upon the velocity behind the moving shock wave. The initial spacing in the
normal direction is chosen as Ay, = §/20 . The axial and final normal spacing are

chesen to provide a reasonable aspect ratio throughout the domain.

Solutions presented can again be taken as the results obtained through uti-
lizing either ATNSCI or ATNSC2 since the steady Reynolds numnber is sufficiently
Jarge as to provide for the exact same solution from cither algorithm. Figure 6.32
is the wlution obtained when the ¢ values were held the same as foi the shock-
bouwn faryv-layer interaction test case of the previous section. “Janiely. ¢ = ¢ = 0.0
and ¢; = ¢4 = 0.025. The numerical solution is compared to the theory of Mirels [31]
which is valid for weak shocks. Time is referenced to the time of the shock wave
passing the sampling point. The peak heat flux is much less than theory or exper-

iment. but it should be realize. that the theoretical value goes to infinity at the
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exact moment of shock passage: The numerical solution is initially less than theory,
but soon turns so as to become greater that the theoretical flux. The numerical
solution continues to be greater than the theoretical value as the shock continues to
progress downstream. Agreement between the numerical solution and cxperiment
is good beyond approximately 0.3 msec. Figure 6.33 gives the percent difference,
Eq 3.17, between the theoretical value and the ATNSC solution as a function of
time. The initial large difference is expected as theory predicts an infinite heat flux.
The numerical solution continues to exhibit a larger percent difference as time goes
on. A dramatic change in the slope of the heat flux profile at approximately 0.05
msec suggests there may be an anology to the behavior of the skin friction profile of

the previous section with regards to e.

Turning again to the work of Seider and Hanel [39], they observed the wall
temperature on a flat plate approached the freestream temperature, rather than
thie recovery temperature, as ¢ was incrcased. They also found that this effect was
negated when they increased the number of points in the boundary-layer from 7 to
14. While increasing the number of points in the boundary-layer is reasonable for
steady state calculations, for the unstcady calculations of this test case there is no

boundary-layer immediately at shock passing.

Figures 6.34 and 6.35 depict the ATNSC solution when ¢ is set to 0 for all ficlds.
The peak heat flux has increased from the value of 0.94 BTU/ft? - s of Figure 6.32
to 1.24 BTU/ft? - s. The heat flux profile is much smoother than Figure 6.34 and
approaches the theoretical values very rapidly. Fiqure 6.35 shows that the calculated
heat flux becomes greater than the theotetical value and then drops to a value 7'7
lower that theoretical, followed by a rise to a final level just 1% lower that the
theoretical level. The carly rise above theoretical levels followed by a drop bhelow
the theoretical level may perhaps be explained by examining Figure 6.34. The
theoretical curve must approach infinity as time goes to zero. Following backwards

along the curve. the rise in heat transfer must begin before the associated rise in
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the-numerical solution, or any physical solution, since neither approach infinity at
time zero. Both the numerical and theoretical heat flux profiles are shifted beluw
the experimental profile. Increasing the shock Mach nuinber to the upper end of the

experimental tolerance is suggested, and will be examined shortly.

Visbal’s implementation of the Beam-Warming algorithm, Eq 3.39, is also used
to obtain a solution to this test case. Trapezoidal time differencing is used to provide

second-order accuracy in time.

Figures 6.36 and 6.37 represent the solution obtained using the nominal rec-
ommended value of the sccond and fourth-order damping coefficients as given in
Section 6.3. Beam-Warming piedicts a peak heat flux between that of Figures 6.34
and 6.32. Rather severc oscillations occur in the heat flux just after the shock passes
the sampling point but eventually damp out to a final heat flux value 26% higher than
the theorectical value. Beam-\Waiming heat flux values agree well with experiment
after approximately 0.2 msec. “his is surprising in light of the severe oscillations

occuring prior to this time.

The values of the damping coefficients are now doubled, consistent with the
shock-boundary -laver interaction case. and the solution of Figures 6.33 and 6.39
obtained. The peak heat flux has been rednced significantly and the oscillations
damped somewhat, but the final heat flux value has increased to 33% above the
theoretical value. Beam-Warming predictions are now higher than the experimental
values after approximately 0.3 msec. Thus. as the oscillations are damped out. ihe

overall heat flux prediction suffers.

The damping coefficients are finally reduced to hall of their nominal value
resulting in the solutions of Figures 6.10 and 6. 1. The peak heat flux is approaching
a value consistent with the results of Figure 6.34 but the oscillations have become
particularly severe. In fact. reducing the damping much below this point causes the
algorithm to becomie unstable. The lower damping of this solution provides the best

Beam Warming prediction of the final heat flux value. but this is stl 18% above the
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theoretical value. Oscillations in the Beam-Warming solutions of Figures 6.36, 6.38,
and 6.40 suggest a common frequency, independent of the damping applied. Further
examination of the Beam-Warming solutions confirm this. Beam-Warming bieaks
the initial shock wave into a series of compressions and expansion shocks propagating
downstream. As these nonphysical waves pass the sampling point, oscillations in the
heat flux are observed. Varying the amount of damping applied affects the magnitude

of the jumps across these waves, but not the frequency at which they are generated.

A new grid is now utilized in an attempt to see the effect on heat flux of
decreasing Ax in the vicinity of the sampling point. This new grid is shown in
Figure-6.42. The grid spacing varies in the axial direction from an initial value of
Az = 5.066 x 1073 at the upstream boundary to Az = 1.252 x 10~* at the sampling
point to Az = 2.026 x 1072 at the downstream boundary. The grid is stretched away
from the wall with the same initial spacing as the grid of Figure 6.31 but with a final

spacing of Ay = 1.252 x 107% at the upper boundary.

Figures 6.43 and 6.44 depict the result of utilizing ATNSC to arrive at a solution
with ¢ = 0 in all fields. Figure 6.43 shows that the predicted peak heat flux has
increased 24% over that of Figure 6.34. The heat flux profile seems to have been
stretched immediately at shock passage, 1emaining unchanged after appiroximately
0.1 msec, and is still shifted below the experiiental profile. This is verified by

comparison of Figure 6.44 and Figure 6.35.

The Beam-Warming algorithm is applied to this new grid using the nominal
damping coefficients mentioned earlier. Results are shown in Figures 6.45 and 0.46.
While ih~ peak predicted heat flux has increased over that of Figure 6.36, it is just
beginning to approached the level of the ATNSC prediction on the previous grid. At
times greater than 0.3 msec, the solution is tending away form the good agreement
with experimental data exhibited in Figuie 6.36. Figure 6.46 shows a 8% increasc in

the difference from theory, as compared to Figure 6.37, for the final heat flux value.
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Figure 6.42. Second Grid for Heat Flux Solutions

Finally, solutions were computed with the ATNSC and Beam-Warming algo-
rithms with M; = L.117 for comparison against each other and the experimental
data. ATNSC calculations again used ¢ = 0, while nominal values of the damping
coefficients were used for the Beam-Waiming solution. Iigure 6.47 presents the time
history for this case. Agreement between theory, experiment, and the ATNSC solu-
tion is excellent in this case, and suggests that the experimental shock Mach numbet
was probably closer to 2% above the nominal value. Beam-\Warming again undet pre-
dicts the peak heat flux, displays oscillations as compressions and expansion shocks

pass the sampling location, and utimately overpredicts the heat flux level.

[t is clear that a TVD based algorithm such as ATNSC' is necessary to obtain
acceptable solutions for the problem of unsteady shock-induced heat translfer. The
solutions are free of any oscillations and come extremely close to the theoretical
values of Mirels [30]. In contrast, the Beam-Warming algotithm yields solutions with
oscillatory behavior, due to the generation of nonphysical waves. even at relatively
high values of the damping cocfficients. In no instance did the Beam-Warning
algorithm yield an acceptable comparison with theoretical values, predicting heat

flux values IS — 34% higher than theory.

All ATNSC solutions are undertaken at a CFL of 0.95. with the time step

restriction of Eq 1.28. This results in approxiinately 7000 sweeps to arrive at a time
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of 1.0 msec for the first grid, and approximately 14000 sweeps for the second grid.
The Beam-Warming solutions utilize a constant time step which was chosen from

the smallest time step taken by the ATNSC algorithm.

6.5 Conclusions

TVD methodolgy has been applied to problems not previously examined tlsing
TVD schemes. Prior research concentrated mainly on supersonic and hypersonic
flows. both inviscid and viscous, and was almost solely directed towaid obtaining
steady-state solutions. The current effort has extended the TVD methodology to
inviscid transonic cascade flows, viscous flows with shock-induced laminar boundar ¥
layer separation, and unsteady laminar flows with signifcant shock-induced heat

transfer. Additionally, an algorithm was developed herein that shows promise for

application to low Reynolds number situations.

Transonic cascade flows are currently of great interest to gas turbine engine




designers and researchers [2, 14, 13]. Analysis of these flows is a severe test of an
algorithm because of the wide Mach number range, typically 0.3 < M < 1.3, and
the fact that the flow-s confined in a passage where wave systems tend to reflect back
into-the domain. Results presented in Section 3.4 show that not only do the TVD
schemes-of Sections 2.2.2 and 2.2.3 yield steady-state results in excellens agreement
with experiment, but that the transient behavior is also modeled correctly. Correct
modeling of this transient behavior is an important achievement, since previous

efforts have been unsuccessful in this regard [38, 15].

Laminar shock-boundary-layer interaction has been studied by numerous re-
searchers-using highly regarded algorithms such as the MacCormack (28], Dawes {10},
Beam-Warming [L1], and Newton {2¢] methods. While acceptable predictions of
the pressure profile in the boundary-layer have been co...puted, researchers have
remained -unable to accurately compute the skin friction profile. The ATNSC algo-
rithms finally provide the means to accurately compute pressure profiles, separation
and reattachment locations, and skin friction profiles in excellent agreement with the
available experimental data. Results given in Section 6.3 are testament to this. In
addition to the success in solving this complex problem, the current effort extends
the knowledge of how TVD entropy correction affects the boundary-layer velocity

profile.

Unsteady shock-induced heat transfer has been studied theoretically [30, 31],
experimentally [14, 41], and has rccently become of interest computationally. The
increased interest is due to the enhanced system performance available through ac-
curale knowlege of the heat transfer {G]. Ilowever, it is not uncommon for com
puted heat flux values to be an order ol magnitude different from experimental val-
ues [17]. The ATNSC algorithins represent a significant advancement in the state-
of-the-art for computing shock-induced heat transfer. Solutions computed with the
ATNSC schemes. presented in Section 6.4.2. are far superior to the nonphysical

Beam-Warming solutions and agree well with both theory and experiment. Addi
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tionally,.the ATNSC1 data.processing rate is 16% faster than that for Beam-Warming

using the same time step.

Results of applying the ATNSC2 scheme to the viscous Burgers™ equation sug-
gest that the scheme may be beneficial to investigators studying low Reynoids num-
ber flows. The scheme is extremely stable and exhibits superb accuracy for this model
problem. Conventional wisdom states that TVD schemes are not recommended for
problems containing no discontinuities, since they degrade to first- order accuracy
near points of extrema [45]. Behavior of the ATNSC2 scheme suggests that TVD

algorithms warrant a closer examination for application to shock-free flows.

The rescarch described herein represents a significant contribution to the field
of computational fluid dynamics. Suggestions for extending the research efforts are
o o0 o

presented in the following section.

6.6 Further Research

Futther research needs to be conducted ir several areas. The main question
in terms of the inviscid investigations relaies to the effect of grid cell skewness on
entropy production. Isolating this investigation to the inviscid case will enable any
insights to be directly implemented into - 1 iscous algorithm. were it would be difficult

to distinguish between spurious entrep: procduction and normal viscous dissipaticn.

Two areas should be addressed for the viscous algorithms. First is thr effect
of the second-order accurate algorithin at low Reyvnolds numbers. The Reynolds
numbers of interest herein, except for Burgers’ equation, were on the order of 10°
and no distinguishable difference between the ATNSCE and ATNSC2 algorithms was
observed. However, the low Reynolds number test provided by Burgeis™ equation
dramatically showed the enhanced performance of the sccond-order algorithin vver its
first-order counterpart. Although no low Reynolds number flows containing shuchs
comes to mind, except for the high altitude transistion regime were the continuum

2ssumption fails to hold, further investigation into the applicability of the second-

115




order algorithm is certainly warranted. Further analysis of the truncation error
cancelling terms in ATNSC?2 should be performed. If some of the terms are negligible

for certain flow situations, a dramatic increase in computational efficiency may be

possible.

Second, performance of the ATNSC algorithms with a turbulence model in-
cluded should be investigated. At higher overall pressure ratios than the one con-
sidered in Section 6.3, the boundary-layer tends to transition to turbulent upon
teattachment, resulting in higher skin friction levels. As previously mentioned. non-
TVD algorithms under- predict the laminar skin friction level beyond reattachment.
Preliminary investigations show that implementation of a Baldwin-Lomax turbu-
lence model [3] tends to overpredict the skin friction in the turbulent region. This
initially leads the author to believe that turbulence models, developed in the con-
text-of non-TVD aigorithms, may compensate for a non-TVD scheme’s tendency to

under-predict skin friction.

Overall, the TVD based viscous algorithms perform exceptionally well on the
test cases herein. Emphasis must be placed on applying these algorithms to even
more rigorous test cases so as to gain an even greater understanding of their weak-

nesses as well as their strengths.
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Appendix A. Viscous Jacobians
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42 0) =2 (3) e+ N+ 5 (3) 5 - e+ NE (%) - 25 (3)
onl n m b
A =8[Z ) +& @) -nl2 )+ & ()

#/C AR (5) -1 (59)] - e [& (5) - 2 (=52)]}

H3 G- B+ @) - E) + 5 (3)
L{L,2) =

A2 =2 (2) e+ N+ 2 (3) B e+ N2 (L)
(3:2) =3 [EE) + 5N +i5 ()

43(4,2) = -’;,14,(2 2) 4 L [(-2,, +NZ (§) + \-; (2))

AT




A(4,3) =24,(2,3) + £ [ 2 (2) + & (2)]
+1/Cu {38 [ (2) - 32 (=52)] - £ (2)}
+2 {52 () + 5 (2)] + 12 (D)}

A1,4) =0

o) = & (2) fe 0+ 5 () 2

A3 =2 (2 (2) + 2 (2)]

A(44) = 2A4(2,4) + 22 (2 (2) + 2 (2)]

/{8 () ~ 44 (25)] 2 2)

_;12 = — (‘\2)

is given by




[ B(1,1) By(1,2) Bi(1,3) By(l.4) ]
B _aGu_ Bl(gl) Bl(zz) 81(23) Bl(z"l) (."\.4)
T/ Bi(3,1) Bi(3,2) Bi(3.3) Bi(3.4)

_81(4,1) 81(432) 81(4,3) B](‘l,‘!)_

By(1,1) =0

B =515 () + 5 ()] -x (2 (3) + 5 (3)]

Bi(3.0) =& (2) B+ 2 (2) Z2n+ N =22 () - e+ NZ(3)
Bl 1) = 5Bi6.0 = [+ 055 (3) 432 (3)

Be=2 (2 () + 3 ()] + 05 ()
Bi3.2) =4 (2) e+ 0+ £ (%) S 202

Bi(4.2) = 2Bi(3,2) + (£ + 222) [Z (2) + 2 (2)

|
/AR () -8 ()] -k (B)}+ 125 C)
Bi(1.3) =
B =2(2()+ (=) +n2 ()
B33 = 5 (2) Sn+ 0+ 3 (2) B+ n s 02 ()
Bi(4.3) = 2Bii3.3) + L [t + N (2) + 12 (2)]

+UC A2 () - 44 (=52)] -+ (2)}
ro{SeZ(2) + 2 (2)] + n (&)}

Bl“:'l) =0




QO
b

dy (% e
Bi(4,4) = 2B,(3,4) + 2% [2 (2) + 2
w0 (%5 () - 1 ()] + 48

® |2
S
—_—

RN Gl
g
—

B = . -‘-
2 aUy (‘\ '))
is given by
0 0 0 O 1
o n 0 0
~Cr+ N3 0 wao
0 0 0 0]
aG, 15 0 & 0
3= ()E = Hor . ? (A.6)
fr _\m A
’\p'z P 0 0
(N AE 4B 0
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Appendix B. ATEC Routines and FLOWTRACE Results

B.1  Description of ATEC Routines

For clarity, the routines are described in the order they would generally be

called, independent of the sweep direction.

ATEC

GEOMETRY

TFORM
INITIAL
STORE
FLUXF
FLUXG
ROEAVGZ
ROEAVGE
SVALULEZ
EVALUEE
TMSTEP
ALPHAZ
ALPHAE
GCALCZ
GCALCE
BIETATVDZ

BETATVDE
EVECTORZ
EVECTORE
ARTCOMPZ
ARTCOMPE

main program

computes cell centers based on corner values

computes the metric transformation terms

enforces the initial conditions

stores the dependent variables at the current time level
computes the & direction flux

computes the 7 direction flux

computes Roe averaged quantities along constant 5 iines
computes Roe averaged quantities along constant & lines
computes the € eigenvalues

computes the 7 eigenvalues

computes the allowable time step

computes the difference of characteristic variables in the £ direction

- computes the difference of characteristic variables in the 5 direction

computes the flux limiters for the € direction flux

computes the flux limiters for the 5 direction flux

computes artificial dissipation for £ sweep

computes artificial dissipation for 5 sweep

computes the eigenvectors for the € eigenvalues

computes the cigenvectors for the n eigenvalues

computes the final artificial dissipation for the € direction sweep

computes the final artificial dissipation for the n direction sweep
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FSOLVE - solves for the drpendent variables during the & sweep

GSOLVE - solves for the dependent variables during the 5 sweep
BNDBLD - enforces the blade or wall surface boundary conditions
BNDEX - enforces the exit plane boundary conditions

BNDPER - enforces the periodic boundary conditions

BNDIN - enforces the inlet plane boundary conditions

NORM - computes the L, and L, norms

OUTPUT - outputs the solution vector
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B.2 ATEC-FV (Finite-Volume Formulation)

The data processing rate for the finite-volume formulation is 1.2274 x 107°
seconds per grid point per time level for the CRAY X-MP/216, utiiling a 177 x 20
grid. FLOWTRACE results are for 1000 iterations (2000 time levels).

FLOWTRACE RESULTS OF ROUTINES
SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accuml
BETATVDE 1.40E+01 352000 3.98E-05 16.10 16.10
BETATVDZ 1.15E+01 57000 2.02E-04 13.23 29.33
GSOLVE 6.99E+00 352000 1.99E-0S5 8.04 37.37
ATEC 6.55E+00 1 6.55E+00 7.54 44.91
ROEAVGE §.55E+00 3000 1.85E-03 6.39 51.30
ROEAVGZ §.30E+00 3000 1.77E-03 6.10 §7.40
FSOLVE 4 .86E+00 57000 8.52E-05 5.59 62.99
EVECTORE 3.52E+00 352000 1.00E-05 4.05 67.04
ALPHAZ 3.28E+00 3000 1.10E-03 3.78 70.82
GCALCZ 3.16E+00 3000 1.05E-03 3.63 74.45
ARTCOMPE 3.01E+00 352000 8.55E-06 3.46 77.91
EVECTORZ 2.38E+C0 57000 4.18E-05 2.74 80.65
FLUXG 2.37E+00 5000 4.74E-04 2.72 83.37
ARTCOMPZ 2.32E+00 57000 4.06E-05 2.66 86.04
ALPHAE 2.29E+00 2000 1.14E-03 2.63 88.67
FLUXF 2.27E+00 5000 4.54E-04 2.61 91.28
GCALCE 2.15E+00 2000 1.07E-03 2.47 93.75
NORM 1.06E+00 400 2.65E-03 1.22 94.97
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FLOWTRACE RESULTS OF ROUTINES

SORTED BY ’IN-LINE’ FACTOR (DESCENDING)

(CPU Times are Shown in Seconds)

TMSTEP . 1.03E+00 1600 1.03E-03 1.19 96.15
QUTPUT 7.18E-01 1 7.18E-01 0.83 96.98
EVALUEE 6.50E-01 3000 2.17E-04 0.75  97.73
EVALUEZ 6.18E-01 3000 2.06E-04 0.71  98.44
BNDBLD 4.66E-01 5000 9.32E-05 0.54  98.97
BNDEX 3.91E-01 5000 7.82E-05 0.45  99.42
BNDPER 3.35E-01 5000 6.70E-05 0.39  99.81
BNDIN 1.46E-01 5000 2.92E-05 0.17  99.98
STORE 1.61E-02 100 1.61E-04 0.02  100.00
TFORM 3.25E-03 1 3.25E-03 0.00 100.00
GEOMETRY 2.75E-04 1 2.75E-04 0.00 100.00

 INITIAL 1.83E-04 1 1.83E-04 0.00 100.00
Totals 8.69E+01 1689505

(Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routine Name Tot Time # Calls Avg Time Percentage "In-Line" Factor -
ARTCOMPE 3.01E+00 352000 8.55E-06 3.46 349.66
EVECTORE 3.52E+00 352000 1.00E-05 4.05 298.90
GSOLVE 6.99E+00 352000 1.99E-05 8.04 150.58
BETATVDE 1.40E+01 352000 3.98E-05 16.10 75.20
ARTCOMPZ 2.32E+00 57000 4.06E-05 2.66 11.92
EVECTORZ 2.38E+00 57000 4.18E-05 2.74 11.59
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FSOLVE
BETATVDZ
BNDIN

4 .86E+00
1.15E+01
1.46E-01

8.52E-05
2.02E-04
2.92E-05

5.59 5.68
13.23 2.40
0.17 1.45

e o e e it et e St T S s s ey e i A o St e e e A e i S A e S S ST o A e A A S P e S e R S L S At i e e i e e e e
B e g e e e e e e

BNDPER
BNDEX
BNDBLD
EVALUEZ
EVALUEE
FLUXF
FLUXG
GCALCZ
ALPHAZ
‘GCALCE
ALPHAE
ROEAVGZ
ROEAVGE
ATEC
NORM
TMSTEP
OUTPUT
STORE
TFORM
GEOMETRY
INITIAL

3.35E-01
3.91E-01
4 .66E-01
6.18E-01
6.50E-01
2.27E+00
2.37E+00
3.16E+00
3.28E+00

2.15E+00

2.29E+00
5.30E+00
5.85E+00
6.55E+00
1.06E+CO
1.03E+00
7.18E-01
1.61E-02
3.25E-03
2.75E~-04
1.83E-04

6.70E-05
7.82E-05
9.32E-05
2.06E-04
2.17E-04
4 .54E-04
4.,74E-04
1.05E-03
1.10E-03
1.07E-03
1.14E-03
1.77E-03
1.85E-03
6.55E+00
2.65E-03
1.03E-03
7.18E-01
1.61E-04
3.25E-03
2.75E-04
1.83E-04

0.39 0.63
0.45 0.54
0.54 0.46
0.71 0.12
0.75 0.12
2.61 0.09
2.72 0.09

3.63 0.02
3.78 0.02
2.47 0.02
2.63 0.01
6.10 0.01
6.39 0.01
7.54 0.00
1.22 0.00
1.19 0.01
0.83 0.00
0.02 0.01
0.00 0.00
0.00 0.00
0.00 0.00

et e e e e i S et S e s St i e e e S S St A Py P e e S Ay S S o e S Ay o b S 4t S M e e By s o S A e ot A e o e e o S

Totals

8.69E+01

1689505
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B.3 ATEC-FD (Chain-Rule Formulation)

The data processing rate for the chain-rule formulation is 1.2415 x 103 seconds
per grid point per time level for the CRAY X-MP/216, utiiling a 177 x 20 grid.
FLOWTRACE results are for 1000 iterations (2000 time levels).

FLOWTRACE RESULTS OF ROUTINES
SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accum)

BETATVDE 1.37E+01 352000 3.88E-05 15.56 15.56
BETATVDZ 1.13E+01 57000 1.97E-04 12.81 28.37
GSOLVE 8.01E+00 352000 2.28E-05 9.12 37.49
ATEC 6.58E+00 1 6.58E+00 7.49 44 .99
FSOLVE 5.59E+00 57000 9.80E-05 6.36 51.34
ROEAVGE 5.54E+00 3000 1.85E-03 6.30 §7.64
ROEAVGZ 5.29E+00 3000 1.76E-03 6.02 63.67
EVECTORE 3.54E+00 352000 1.01E-05 4.03 67.70
ALPHAZ 3.25E+00 3000 1.08E-03 3.69 71.39
GCALCZ 3.15E+00 3000 1.0SE-03 3.58 74.97
ARTCOMPE 2.99E+00 352000 8.49E-06 3.40 78.37
FLUXG 2.36E+00 5000 4.72E-04 2.69 81.06
EVECTORZ 2.34E+00 §7000 4.11E-05 2.67 83.73
ARTCOMPZ 2.26E+00 §7000 3.97E-05 2.57 86.30
FLUXF 2.26E+00 5000 4.52E-04 2.57 88.88
ALPHAE © 2.26E+00 2000 1.13E-03 2.87 91.45
GCALCE 2.14E+00 2000 1.07E-03 2.44 93.89
NORM 1.03E+00 400 2.57E-03 1.17 95.06
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.17

-

.81
.12
.70
.53
.44
.38
A7
.02
.00
.00

(=] < (=] o (=] o (o] (=] o o (=]

.00

TMSTEP 1.03E+00 1000 1.03E-03
OUTPUT 7.13E-01 1 7.13E~01
EVALUEE 6.33E-01 3000 2.11E-04
EVALUEZ 6.15E-01 3000 2.05E-04
BNDBLD 4.63E-01 5000 9.26E-05
BNDEX 3.91E-01 500G 7.82E-05
BNDPER 3.34E-01 5000 G.68E-05
BNDIN 1.46E=01 5000 2.92E-05
STORE 1.56E-02 100 1.56E-04
TFORM 1.87E=03 1 1.87E-03
GEOMETRY 2.79E-04 1 2.79E-04
INITIAL 2.05E-04 1 2.05E-04
Totals 8.79E+01 1689505

FLOWTRACE RESULTS OF ROUTINES

SORTED BY ’IN-LINE’ FACTOR (DESCENDING)

(CPU Times are Shown in Seconds)

T

(Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routine Name

Tot Time

# Calls Avg Time Percentage "In-Line" Factor

ARTCOMPE
EVECTORE
GSOLVE

BETATVDE
ARTCOMPZ
EVECTORZ

2.99E+00
3.54E+00
8.01E+00
1.37E+01
2.26E+00
2.34E+00

352000 8.49E-06
352000 1.01E-05
352000 2.28E-05
352000 3.88E-05
57000 3.97E-05
57000 4.11E-05
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9.12
15.56
2.57
2.67

352

297.
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76
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FSOLVE 5.59E+00 57000 9.80E-05 6.36 4.94

BETATVDZ 1.13E+01 57000 1.97E-04 12.81 2.45
BNDIN 1.46E-01 5000 2.92E-05 0.17 1.46
BNDPER 3.34E-01 5000 6.68E-05 0.38 0.64
BNDEX 3.91E-01 5000 7.82E-05 0.44 0.54
BNDBLD 4.63E-01 5000 9.26E-05 0.53 0.46
EVALUEZ 6.15E-01 3000 2.0SE-04 0.70 0.12
EVALUEE 6.33E-01 3000 2.11E-04 0.72 0.12
FLUXF 2.26E+00 5000 4.52E-04 2.57 0.09
FLUXG 2.36E+00 5000 4.72E-04 2.69 0.09
GCALCZ 3.15E+00 3000 1.05E-03 3.58 0.02
ALPHAZ 3.25E+00 3000 1.08E-03 3.69 0.02
GCALCE 2.14E+00 2000 1.07E-03 2.44 0.02
ALPHAE 2.26E+00 2000 1.13E-03 2.57 0.02
‘ROEAVGZ 5.29E+00 3000 1.76E-03 6.02 0.01
ROEAVGE 5.54E+00 3000 1.85E-03 6.30 0.01
ATECFD 6.58E+00 1 6.58E+00 7.49 0.00
NORM 1.03E+00 400 2.57E-03 1.17 0.00
TMSTEP 1.03E+00 1000 1.03E-03 1.17 0.01
OUTPUT 7.13E-01 1 7.13E-01 0.81 0.00
STORE 1.56E-02 100 1.56E-04 0.02 0.01
TFORM 1.87E-03 1 1.87E-03 0.00 0.00
GEOMETRY 2.79E-04 1 2.79E-04 0.00 0.00
INITIAL 2.05E-04 1 2.05E-04 0.00 0.00

o e iy e o o o o o T T T L e o Py
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Appendix C. ATNSC Routines and FLOWTRACE Results

C.1 Description of ATNSC! and ATNSC2 Routines

For clarity, the routines are described in the order they would generally be

called, independent of the sweep direction.

ATNSC1 (ATNSC2)

GEOMETRY
TEORM
INITIAL
STORE
BULFLUX
VISFLUX
ROEAVGZ
ROEAVGE
EVALUEZ
EVALUELR
TMSTEP
ALPHAZ
ALPHAE
GCALCZ
GCALCE
JACOBIAN
PSIZETA
PSIETA
BETATVDZ
BETATVDE
EVECTORZ

- main program

computes cell centers based on corner values

computes the metric transformation terms

enforces the initial conditions

stores the dependent variables at the current time level

computes the inviscid flux terms

computes the viscous flux terms

computes Roe averaged quantities along constant 7 lines

computes Roe averaged quantities along constant ¢ lines

computes the £ eigenvalues

computes the 5 eigenvalues

computes the allowable time step
- computes the difference of characteristic variables in the £ direction

- computes the difference of characteristic variables in the 5 direction

computes the flux limiters for the £ direction flux

computes the flux limiters for the y direction flux

computes the viscous Jacobians (ATNSC?2 only)

computes the final viscous flux in the £ direction

computes the final viscous flux in the » direction

compules artificial dissipation for £ sweep

computes artificial dissipation for n sweep

- computes the cigenvectors for the € cigenvalues
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EVECTORE - computes the eigenvectors for the 7 eigenvalues

ARTCOMPZ - computes the final artificial dissipation for the ¢ direction sweep
ARTCOMPE - computes the final artificial dissipation for the 5 direction sweep
FSOLVE - solves for the drpendent variables during the £ sweep

-GSOLVE - solves for the dependent variables during the 5 sweep

BNDBLD - enforces the blade or wall surface boundary conditions

BNDEX - enforces the exit plane boundary conditions

BNDPER - enforces the periodic boundary conditions

BNDIN - enforces the inlet plane boundary conditions

NORM - computes the L, and L, norms

-OUTPUT - outputs the solution vector
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C.2 ATNSC! (Constant Damping)

The data processing rate for the constant ¢ case is 1.6071 x 10~® scconds
per grid point per time level for the CRAY X-MP/216, utiiling a 133 x 60 grid.
FLOWTRACE results are for 200 iterations (400 time levels).

FLOWTRACE RESULTS OF ROUTINES
SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accumj,

VISFLUX 7.66E+00 1000 7.66E-03 14.92 14.92
FSOLVE 6.13E+00 34800 1.76E-04 11.94 26.86
BETATVDZ 4.69E+00 34800 1.35E-04 9.13 35.99
GSOLVE 4.40E+00 52400 8.40E-05 8.57 44.56
BETATVDE 4.25E+00 52400 8.11E-05 8.28 52.84
ROEAVGE 2.67E+00 600 4.45E-03 5.20 58.04
ROEAVGZ 2.66E+00 600 4.44E-03 5.19 63.23
ATNSC1 1.92E+00 1 1.92E+00 3.74 66.97
ALPHAZ 1.61E+00 600 2.68E-03 3.13 70.09
EULFLUX 1.59E+00 1000 1.59E-03 3.11 73.20
GCALCZ 1.53E+00 600 2.55E-03 2.98 76.18
OUTPUT 1.49E+00 1 1.49E+00 2.90 79.08
PSIZETA 1.20E+00 600 2.00E-03 2.34 81.42
EVECTORZ 1.19E+00 34800 3.41E-0S5 2.31 83.73
ARTCOMPZ 1.18E+00 34800 3.38E-05 2.29 86.02
ALPHAE 1.08E+00 400 2.71E-03 2.11 88.13
TMSTEP 1.08E+00 200 5.38E-03 2.09 90.22
GCALCE 1.02E+00 400 2.55E-03 1.99 92.21
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‘EVECTORE 9.69E-01 52400 1
ARTCOMPE 8.09E<01 52400 1
‘PSIETA 8.0SE-01 400 2
"NORM. 5.01E-01 80 6
EVALUEZ 3.24E-01 600 5.
‘EVALUEE 3.23E-01 600 5
BNDBLD 1.97E-01 1000 1
BNDEX 4.17E-02 1000 4.
BNDIN 1:32E-02 1000 1
STORE 7.56E-03 20 3
INITIAL 5.34E-03 15
TFORM 4.42E-03 14
Totals 5.13E+01 359504

FLOWTRACE RESULTS OF ROUTINES

.85E-05
.54E-05
.01E-03
.26E-03

39E-04

.39E-04
.97E-04

17E-05

.32E-05
.78E-04
.34E-03
.42E-03

SORTED BY ’IN-LINE’ FACTOR (DESCENDING)

(CPU Times are Shown in Seconds)

[
[ 42 N & 2 I 0 o
~N o ¢

[=] (=] (=] o (=] (=] o (=] (=]
.
«

(Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routine Name

Tot Time

# Calls Avg Time Percentage

——— - ——— = o — = e e - e e - R e g ——

ARTCOMPE
EVECTORE
ARTCOMPZ
EVECTORZ
BETATVDE

GSOLVE

8.09E-01
9.69E-01
1.18E+00
1.19E+00
4 .25E+00
4.40E+00

52400 1.
52400 1.
34800 3.
34800 3.
52400 8.
52400 8.

S4E-05
85E-05
38E-05
41E-05
11E-05
40E-05
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2.29
2.31
8.28
8.57

“"In-Line" Factor
28.84
24.08
8.74
8.68
5.49
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BETATVDZ. 4.69E+00 34800 1.35E-04 9.13 2.19
FSOLVE 6.13E+00 34800 1.76E-04 11.94 1.68
BNDIN 1.32E-02 1000 1.32E-05 0.03 0.64
BNDEX 4.17E-02 1000 4.17E~05 0.08 0.20
‘BNDBLD 1.97E-01 1000 1.97E-04 0.38 0.04
VISFLUX 7.66E+00 1000 7.66E-03 14.92 0.00
‘ROEAVGE 2.67E+00 600 4.45E-03 5.20 0.00
‘ROEAVGZ 2.66E+00 600 4.44E-03 5.19 0.00
ATNSC1 1.92E+00 1 1.92E+00 3.74 0.00
ALPHAZ 1.61E+00 600 2.68E-03 3.13 0.00
EULFLUX 1.59E+00 1000 1.59E-03 3.11 0.01
GCALCZ 1.53E+00 600 2.55E-03 2.98 0.00
OUTPUT 1.49E+00 1 1.49E+00 2.90 0.00
PSIZETA 1.20E+00 600 2.00E-03 2.34 0.00
ALPHAE 1.08E+00 400 2.71E-03 2.11 0.00
TMSTEP 1.08E+00 200 5.38E-03 2.09 0.00
GCALCE 1.02E+00 400 2.55E-03 1.99 0.00
PSIETA 8.05E-01 400 2.01E-03 1.57 0.00
NORM 5.01E-01 80 6.26E-03 0.98 0.00
EVALUEZ 3.24E-01 600 5.39E-04 0.63 0.01
EVALUEE 3.23E-01 600 5.39E-04 0.63 0.01
STORE 7.56E-03 20 3.78E-04 0.01 0.00
INITIAL $.34E-03 1 5.34E-03 0.01 0.00
TFORM 4.42E-03 1 4.42E-03 0.01 0.00
Totals 5.13E+01 359504




C.3 ATNSCI (Anisotropic and [sotropic Damping)

The data processing rate for the variable € case is 2.0457 x 10~° seconds per grid
point per time level for the CRAY X-MP/216, utiiling a 133x60 grid. FLOWTRA,

results are for 200 iterations (400 time levels).

FLOWTRACE RESULTS OF ROUTINES
SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accumj

BETATVDZ 1.58E+01 34800 4.54E-04 24.22 24.22
VISFLUX 7.63E+00 1000 7.63E~03 11.70 35.91
BETATVDE 6.77E+00 52400 1.29E-04 10.37 46.28
FSOLVE 6.13E+00 34800 1.76E-04 9.39 55.67
GSOLVE 4 .58E+00 52400 8.74E-05 7.02 62.69
ROEAVGE 2.66E+00 600 4.43E-03 4.07 66.77
ROEAVGZ 2.65E+00 600 4.42E-03 4.06 70.83
ATNSC1 1.98E+00 1 1.98E+00 3.03 73.86
ALPHAZ 1.60E+00 600 2.66E-03 2.45 76.30
EULFLUX 1.58E+00 1000 1.58E-03 2.43 78.73
OUTPUT 1.58E+00 1 1.58E+00 2.42 81.15
GCALCZ 1.53E+00 600 2.55E-03 2.34 83.49
PSIZETA 1.22E+00 600 2.04E-03 1.88 85.37
EVECTORZ 1.18E+00 34800 3.40E-05 1.81 87.18
ARTCOMPZ 1.16E+00 34800 3.34E-05 1.78 88.96
TMSTEP 1.08E+00 200 5.40E-03 1.65 90.61
ALPHAE 1.Q7E+00 400 2.68E-03 1.65 92.26
GCALCE 1.02E+00 400 2.55E-03 1.56 93.82

C-134




EVECTORE
PSIETA
ARTCOMPE
NORM
EVALUEZ
EVALUEE
BNDBLD
BNDEX
BNDIN
STORE
INITIAL
TFORM

w w [¢] [04) oo [(e]
[y
N
(23]
]
o
=

52400
400
52400
84
600
600
1000
1000
1000
20
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FLOWTRACE RESULTS OF ROUTINES

SORTED BY ’IN-LINE’ FACTOR (DESCENDING)

(CPU Times are Shown in Seconds)

{Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routir.c Name

Tot Tinme

# Calls

Avg Time Percentage

ARTCOMPE
EVECTORE
ARTCOMPZ
EVECTORZ
GSOLVE

BETATVDE

8.01E-01
9.87E-01
1.16E+00
1.18E+00
4.58E+00
6.77E+00

52400
52400
34800
34800
52400
52400

1.53E-05
1.88E-05
3.34E-05
3.40E-05
8.74E-05
1.28E-04
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1.23
1.51
1.78
1.81
7.02
10.37

"In~Line" Factor
29.11
23.64
8.86
8.71
5.09
3.45




FSOLVE 6.13E+00 34800 1.76E-04 9.39 1.68

BETATVDZ 1.58E+01 34800 4.54E-04 24,22 0.65
BNDIN 1.42E-02 1000 1.42E-05 0.02 0.60
BNDEX 4.26E-02 1000 4.26E-05 0.07 0.20
BNDBLD 1.96E-01 1000 1.96E-04 0.30 0.04
VISFLUX 7.63E+00 1000 7.63E-03 11.70 0.00
ROEAVGE 2.66E+00 600 4.43E-03 4.07 0.00
ROEAVGZ 2.65E+00 600 4.42E-03 4.06 0.00
ATNSC1 1.98E+00 1 1.98E+00 3.03 0.00
ALPHAZ 1.60E+00 600 2.66E-03 2.45 0.00
EULFLUX 1.58E+00 1000 1.58E-03 2.43 0.01
OUTPUT 1.58E+00 1 1.58E+00 2.42 0.00
GCALCZ 1.53E+00 600 2.55E-03 2.34 0.00
PSIZETA 1.22E+00 600 2.04E-03 1.88 0.00
TMSTEP 1.08E+00 200 5.40E-03 1.65 0.00
ALPHAE 1.07E+00 400 2.68E-03 1.65 0.00
GCALCE 1.02E+00 400 2.55E-03 1.56 0.00
PSIETA 8.16E-01 400 2.04E-03 1.25 .00
NORM 5.16E-01 84 6.15E-03 0.79 0.00
EVALUEZ 3.21E-01 600 5.35E-04 0.49 0.01
EVALUEE 3.20E-01 600 5.33E-04 0.49 0.01
STORE 7.79E-03 20 3.90E-04 0.01 0.00
INITIAL 5.37E-03 1 5.37E-03 0.01 0.00
TFORM 4.35E-03 1 4.35E-03 0.01 0.00
Totals 6.53E+01 359508
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C.4 ATNSC2 (No Jacobian Update Between Operators)

The data processing rate when the viscous Jacobians are updated only after
a complete sequence of operator sweeps is 7.6128 x 10~ seconds per grid point per
time level. This is for the CRAY X-MP/216, utiiling a 133 x 60 grid. FLOWTRACE

results are for 200 iterations (400 time levels).

FLOWTRACE RESULTS OF ROUTINES
SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accumj

JACOBIAN 1.61E+02 200 8.05E-01 66.26 66.26
PSIZETA 2.01E+01 600 3.35E-02 8.26 74.53
'PSIETA 1.34E+01 400 3.36E-02 §.63 80.05
VISFLUX 7.52E+00 1000 7.52E-03 3.10 83.15
FSOLVE 6.03E+00 34800 1.73E-04 2.48 85.63
BETATVDZ 4 .69E+00 34800 1.35E-04 1.93 87.56
GSOLVE 4.34E+00 52400 8.28E-05 1.79 89.34
BETATVDE 3.89E+00 52400 7.43E-05 1.60 90.95
ROEAVGE 2.66E+00 600 4.43E-03 1.09 92.04
ROEAVGZ 2.65E+00 600 4.41E-03 1.09 93.13
ATNSC2 1.92E+00 1 1.92E+00 0.79 93.92
ALPHAZ 1.58E+00 600 2.63E-03 0.65 94.57
EULFLUX 1.57E+00 1000 1.57E-03 0.65 95.21
OUTPUT 1.54E+00 1 1.54E+00 0.63 95.85
GCALCZ 1.52E+00 600 2.54E-03 0.63 96.47
EVECTORZ 1.16E+00 34800 3.34E-05 0.48 96.95
ARTCOMPZ 1.14E+00 34800 3.27E-05 0.47 97.42
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TMSTEP 1.07E+00 200 5.36E-03 0.44 97.86
ALPHAE 1.06E+00 400 2.66E-03 0.44 98.30
GCALCE 1.02E+00 400 2.54E-03 0.42  98.72
EVECTORE 9.42E-01 52400 1.80E-05 0.39  99.10
ARTCOMPE 7.77E-01 52400 1.48E-05 0.32  99.42
NORM 5.00E-01 80 6.26E-03 0.21  99.63
EVALUEZ 3.14E-01 600 5.23E-04 0.13  99.76
EVALUEE 3.11E-01 600 5.19E-04 0.13  99.89
BNDBLD 2.03E-01 1000 2.03E-04 0.08  99.97
BNDEX 4.14E-02 1000 4.14E-05 0.02  99.99
BNDIN 1.31E-02 1000 1.31E-05 0.01  99.99
STORE 7.45E-03 20 3.73E-04 0.00 100.00
INITIAL 5.40E-03 1 5.40E-03 0.00  100.00
TFORM 4.22E-03 1 4.22E-03 0.00 100.00
Totals 2.43E+02 359704
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FLOWTRACE RESULTS OF ROUTINES
SORTED BY ’IN-LINE’ FACTOR (DESCENDING)
(CPU Times are Shown in Seconds)

(Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routine Name Tot Time # Calls Avg Time Percentage "In-Line" Factor
ARTCOMPE 7.77TE-01 52400 1.48E-05 0.32 30.03
EVECTORE 9.42E-01 52400 1.80E-05 0.39 24.76
‘ARTCOMPZ 1.14E+00 34800 3.27E-05 0.47 9.05
EVECTORZ 1.16E+00 34800 3.34E-05 0.48 8.86
BETATVDE 3.89E+00 52400 7.43E-05 1.60 5.99
GSOLVE 4.34E+00 52400 8.28E-05 1.79 5.38
BETATVDZ 4.69E+00 34800 1.35E-04 1.93 2.19
FSOLVE 6.03E+00 34800 1.73E-04 2.48 1.71
BNDIN 1.31E-02 1000 1.31E-05 0.01 0.65
BNDEX 4.14E-02 1000 4.14E-05 0.02 0.21
BNDBLD 2.03E-01 1000 2.03E-04 0.08 0.04
JACOBIAN 1.61E+02 200 8.05E-01 66.26 0.00
PSIZETA 2.01E+01 600 3.35E-02 8.26 0.00
PSIETA 1.34E+01 400 3.36E-02 5.53 0.00
VISFLUX 7.52E+00 1000 7.52E-03 3.10 0.00
ROEAVGE 2.66E+00 600 4.43E-03 1.09 0.00
ROEAVGZ 2.65E+00 600 4.41E-03 1.09 0.00
ATNSC2 1.92E+00 1 1.92E+00 0.79 0.00
ALPHAZ 1.58E+00 600 2.63E-03 0.65 0.00
EULFLUX 1.57E+00 1000 1.57E-03 0.65 0.01
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OUTPUT
GCALCZ
TMSTEP
ALPHAE
GCALCE
NORM
EVALUEZ
EVALUEE
STORE
INITIAL
TFORM

Totals

.54E+00
.52E+00
.07E+00
.06E+00
.02E+00
.00E-01
.14E-01
.11E-01
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C.5 ATNSC?2 (Jacobian Update After Each Operator Sweep)

The data processing rate when the viscous Jacobians are updated after each
operator sweep is 1.9988 x 10~* seconds per grid point per time level. This is for
the CRAY X-MP/216, utiiling a 133 x 60 grid. FLOWTRACE results are for 200

iterations (400 time levels).

FLOWTRACE RESULTS OF ROUTINES
SORTED BY TIME USED (DESCENDING)

(CPU Times are Shown in Seconds)

Routine Name Tot Time # Calls Avg Time Percentage Accumy
PSIZETA 2.41E+02 600 4.01E-01 37.77 37.77
JACOBIAN 1.86E+02 1000 1.86E-01 29.15 66.93
PSIETA 1.62E+02 400 4.04E-01 25.37 92.30
VISFLUX 7.54E+00 1000 7.54E-03 1.18 93.48
FSOLVE 6.09E+00 34800 1.75E-04 0.95 94.44
BETATVDZ 4.69E+00 34800 1.35E-04 0.74 95.17
GSOLVE 4.56E+00 52400 8.69E-05 0.71 95.89
BETATVDE 4.16E+00 52400 7.93E-05 0.65 96.54
ROEAVGE 2.65E+00 600 4.42E-03 0.42 96.95
ROEAVGZ 2.65E+00 600 4.41E-03 0.41 97.37
ATNSC2 1.93E+00 1 1.93E+00 0.30 97.67
ALPHAZ 1.58E+00 600 2.63E-03 0.25 97.92
EULFLUX 1.57E+00 1000 1.57E-03 0.25 98.17
OUTPUT 1.55E+00 1 1.55E+00 0.24 98.41
GCALCZ - 1.63E+00 600 2.55E-03 0.24 98.65
EVECTORZ 1.16E+00 34800 3.33E-05 0.18 98.83
ARTCOMPZ 1.14E+00 34800 3.29E-05 0.18 99.01
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TMSTEP 1.06E+00 200
ALPHAE 1.06E+00
GCALCE 1.02E+00 400
EVECTORE 9.79E-01
ARTCOMPE 7.85E-01
NORM 5.03E-01 80
EVALUEZ 3.14E-01 600
EVALUEE 3.13E-01
BNDBLD 2.03E-01 1000
BNDEX 4.24E-02 1000
BNDIN 1.42E-02 1000
STORE 7.44E-03 20
INITIAL 5.35E-03
TFORM 4.32E-03 1
Totals 6.38E+02 360504
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FLOWTRACE RESULTS OF ROUTINES
SORTED BY ’IN-LINE’ FACTOR (DESCENDING)
(CPU Times;are Shown in Seconds)

(Factors Greater Than 1 Could Indicate Candidates for In-Lining)

Routine Name Tot Time # Calls Avg Time Percentage "In-Line" Factor
ARTCOMPE 7.85E-01 52400 1.50E-05 0.12 29.73
EVECTORE 9.79E-01 52400 1.87E-05 0.15 23.82
ARTCOMPZ 1.14E+00 34800 3.29E-05 0.18 8.99
EVECTORZ 1.16E+00 34800 3.33E-05 0.18 8.87
BETATVDE 4.16E+00 52400 7.93E-05 0.65 5.61
GSOLVE 4.56E+00 52400 8.69E~05 0.71 5.12
BETATVDZ 4.69E+00 34800 1.35E-04 0.74 2.19
FSOLVE 6.09E+00 34800 1.75E-04 0.95 1.69
BNDIN 1.42E-02 1000 1.42E-05 0.00 0.60
BNDEX 4.24E-02 1000 4.24E-05 0.01 0.20
BNDBLD 2.03E-01 1000 2.03E-04 0.03 0.04
PSIZETA 2.41E+02 600 4.01E-01 37.77 0.00
JACOBIAN 1.86E+02 1000 1.86E-01 29.15 0.00
PSIETA 1.62E+02 400 4.04E-01 25.37 0.00
VISFLUX 7.54E+00 1000 7.54E-03 1.18 0.00
ROEAVGE 2.65E+00 600 4.42E-03 0.42 0.00
ROEAVGZ 2.65E+00 600 4.41E-03 0.41 0.00
ATNSC2 1.93E+00 1 1.93E+00 0.30 0.00
ALPHAZ 1.58E+00 600 2.63E-03 0.25 0.00
EULFLUX 1.57E+00 1000 1.57E-03 0.25 0.01
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OUTPUT + 1.55E+00 1 1.55E+00 0.24 0.00
GCALCZ 1.53E+00 600 2.55E-03 0.24 0.00
TMSTEP 1.06E+00 200 5.32E-03 0.17 0.00
ALPHAE 1.06E+00 400 2.66E-03 0.17 0.00
GCALCE 1.02E+00 400 2.54E-03 0.16 0.00
NORM 5.03E-01 80 6.29E-03 0.08 0.00
EVALUEZ 3.14E-01 600 5.24E-04 0.05 0.01
EVALUEE 3.13E-01 600 5.22E-04 0.05 0.01
STORE 7.44E-03 20 3.72E-04 0.00 0.00
INITIAL 5.35E-03 1 5.35E-03 0.00 0.00
TFORM 4.32E-03 1 4.32E-03 0.00 0.00
Totals 6.38E+02 360504
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